Data Trusts: Ethics, Architecture and Governance for Trustworthy Data Stewardship

Web Science Institute Paper by Kieron O’Hara: “In their report on the development of the UK AI industry, Wendy Hall and Jérôme Pesenti
recommend the establishment of data trusts, “proven and trusted frameworks and agreements” that will “ensure exchanges [of data] are secure and mutually beneficial” by promoting trust in the use of data for AI. Hall and Pesenti leave the structure of data trusts open, and the purpose of this paper is to explore the questions of (a) what existing structures can data trusts exploit, and (b) what relationship do data trusts have to
trusts as they are understood in law?

The paper defends the following thesis: A data trust works within the law to provide ethical, architectural and governance support for trustworthy data processing

Data trusts are therefore both constraining and liberating. They constrain: they respect current law, so they cannot render currently illegal actions legal. They are intended to increase trust, and so they will typically act as
further constraints on data processors, adding the constraints of trustworthiness to those of law. Yet they also liberate: if data processors
are perceived as trustworthy, they will get improved access to data.

Most work on data trusts has up to now focused on gaining and supporting the trust of data subjects in data processing. However, all actors involved in AI – data consumers, data providers and data subjects – have trust issues which data trusts need to address.

Furthermore, it is not only personal data that creates trust issues; the same may be true of any dataset whose release might involve an organisation risking competitive advantage. The paper addresses four areas….(More)”.