Paper by Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan in Science: “Health systems rely on commercial prediction algorithms to identify and help patients with complex health needs. We show that a widely used algorithm, typical of this industry-wide approach and affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses. Remedying this disparity would increase the percentage of Black patients receiving additional help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than illness, but unequal access to care means that we spend less money caring for Black patients than for White patients. Thus, despite health care cost appearing to be an effective proxy for health by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of convenient, seemingly effective proxies for ground truth can be an important source of algorithmic bias in many contexts….(More)”.
Dissecting racial bias in an algorithm used to manage the health of populations
How to contribute:
Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?
Share it with us at info@thelivinglib.org so that we can add it to the Collection!
About the Curator
Get the latest news right in you inbox
Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday
Related articles
DATA
Uncovering Parental Urban Mobility and Amenity Visits through Large-scale GPS Data
Posted in October 17, 2025 by Stefaan Verhulst
artificial intelligence
How People Around the World View AI
Posted in October 17, 2025 by Stefaan Verhulst
DATA
Proprietary data, open data, data commons: Who owns the data? How to best reconcile conflicting interests in exploiting the value of data and protecting against its risks
Posted in October 17, 2025 by Stefaan Verhulst