Game Changing Tools for Evidence Synthesis: Generative AI, Data and Policy Design

Paper by Geoff Mulgan, and Sarah O’Meara: “Evidence synthesis aims to make sense of huge bodies of evidence from around the world and make it available for busy decision-makers. Google search was in some respects a game changer in that you could quickly find out what was happening in a field – but it turned out to be much less useful for judging which evidence was relevant, reliable or high quality. Now large language models (LLM) and generative AI are offering an alternative to Google and again appear to have the potential to dramatically improve evidence synthesis, in an instant bringing together large bodies of knowledge and making it available to policy-makers, members of parliament or indeed the public. 

But again there’s a gap between the promise and the results. ChatGPT is wonderful for producing a rough first draft: but its inputs are often out of date, it can’t distinguish good from bad evidence and its outputs are sometimes made up.  So nearly a year after the arrival of ChatGPT we have been investigating how generative AI can be used most effectively, and, linked to that, how new methods can embed evidence into the daily work of governments and provide ways to see if the best available evidence is being used.

We think that these will be game-changers: transforming the everyday life of policy-makers, and making it much easier to mobilise, and assess evidence – especially if human and machine intelligence are combined rather than being seen as alternatives. But they need to be used with care and judgement rather than being panaceas. [Watch IPPO’s recent discussion here]…(More)”.