Imagining Data Without Division

Thomas Lin in Quanta Magazine: “As science dives into an ocean of data, the demands of large-scale interdisciplinary collaborations are growing increasingly acute…Seven years ago, when David Schimel was asked to design an ambitious data project called the National Ecological Observatory Network, it was little more than a National Science Foundation grant. There was no formal organization, no employees, no detailed science plan. Emboldened by advances in remote sensing, data storage and computing power, NEON sought answers to the biggest question in ecology: How do global climate change, land use and biodiversity influence natural and managed ecosystems and the biosphere as a whole?…
For projects like NEON, interpreting the data is a complicated business. Early on, the team realized that its data, while mid-size compared with the largest physics and biology projects, would be big in complexity. “NEON’s contribution to big data is not in its volume,” said Steve Berukoff, the project’s assistant director for data products. “It’s in the heterogeneity and spatial and temporal distribution of data.”
Unlike the roughly 20 critical measurements in climate science or the vast but relatively structured data in particle physics, NEON will have more than 500 quantities to keep track of, from temperature, soil and water measurements to insect, bird, mammal and microbial samples to remote sensing and aerial imaging. Much of the data is highly unstructured and difficult to parse — for example, taxonomic names and behavioral observations, which are sometimes subject to debate and revision.
And, as daunting as the looming data crush appears from a technical perspective, some of the greatest challenges are wholly nontechnical. Many researchers say the big science projects and analytical tools of the future can succeed only with the right mix of science, statistics, computer science, pure mathematics and deft leadership. In the big data age of distributed computing — in which enormously complex tasks are divided across a network of computers — the question remains: How should distributed science be conducted across a network of researchers?
Part of the adjustment involves embracing “open science” practices, including open-source platforms and data analysis tools, data sharing and open access to scientific publications, said Chris Mattmann, 32, who helped develop a precursor to Hadoop, a popular open-source data analysis framework that is used by tech giants like Yahoo, Amazon and Apple and that NEON is exploring. Without developing shared tools to analyze big, messy data sets, Mattmann said, each new project or lab will squander precious time and resources reinventing the same tools. Likewise, sharing data and published results will obviate redundant research.
To this end, international representatives from the newly formed Research Data Alliance met this month in Washington to map out their plans for a global open data infrastructure.”