Green Light


Google Research: “Road transportation is responsible for a significant amount of global and urban greenhouse gas emissions. It is especially problematic at city intersections where pollution can be 29 times higher than on open roads.  At intersections, half of these emissions come from traffic accelerating after stopping. While some amount of stop-and-go traffic is unavoidable, part of it is preventable through the optimization of traffic light timing configurations. To improve traffic light timing, cities need to either install costly hardware or run manual vehicle counts; both of these solutions are expensive and don’t provide all the necessary information. 

Green Light uses AI and Google Maps driving trends, with one of the strongest understandings of global road networks, to model traffic patterns and build intelligent recommendations for city traffic engineers to optimize traffic flow. Early numbers indicate a potential for up to 30% reduction in stops and 10% reduction in greenhouse gas emissions (1). By optimizing each intersection, and coordinating between adjacent intersections, we can create waves of green lights and help cities further reduce stop-and-go traffic. Green Light is now live in 70 intersections in 12 cities, 4 continents, from Haifa, Israel to Bangalore, India to Hamburg, Germany – and in these intersections we are able to save fuel and lower emissions for up to 30M car rides monthly. Green Light reflects Google Research’s commitment to use AI to address climate change and improve millions of lives in cities around the world…(More)”

Artificial Intelligence Applications for Social Science Research


Report by Megan Stubbs-Richardson et al: “Our team developed a database of 250 Artificial Intelligence (AI) applications useful for social science research. To be included in our database, the AI tool had to be useful for: 1) literature reviews, summaries, or writing, 2) data collection, analysis, or visualizations, or 3) research dissemination. In the database, we provide a name, description, and links to each of the AI tools that were current at the time of publication on September 29, 2023. Supporting links were provided when an AI tool was found using other databases. To help users evaluate the potential usefulness of each tool, we documented information about costs, log-in requirements, and whether plug-ins or browser extensions are available for each tool. Finally, as we are a team of scientists who are also interested in studying social media data to understand social problems, we also documented when the AI tools were useful for text-based data, such as social media. This database includes 132 AI tools that may have use for literature reviews or writing; 146 tools that may have use for data collection, analyses, or visualizations; and 108 that may be used for dissemination efforts. While 170 of the AI tools within this database can be used for general research purposes, 18 are specific to social media data analyses, and 62 can be applied to both. Our database thus offers some of the recently published tools for exploring the application of AI to social science research…(More)”

The Deliberative Turn in Democratic Theory


Book by Antonino Palumbo: “Thirty years of developments in deliberative democracy (DD) have consolidated this subfield of democratic theory. The acquired disciplinary prestige has made theorist and practitioners very confident about the ability of DD to address the legitimacy crisis experienced by liberal democracies at present at both theoretical and practical levels. The book advance a critical analysis of these developments that casts doubts on those certainties — current theoretical debates are reproposing old methodological divisions, and are afraid to move beyond the minimalist model of democracy advocated by liberal thinkers; democratic experimentation at the micro-level seems to have no impact at the macro-level, and remain sets of isolated experiences. The book indicates that those defects are mainly due to the liberal minimalist frame of reference within which reflection in democratic theory and practice takes place. Consequently, it suggests to move beyond liberal understandings of democracy as a game in need of external rules, and adopt instead a vision of democracy as a self-correcting metagame…(More)”.

Using Artificial Intelligence to Accelerate Collective Intelligence


Paper by Róbert Bjarnason, Dane Gambrell and Joshua Lanthier-Welch: “In an era characterized by rapid societal changes and complex challenges, institutions’ traditional methods of problem-solving in the public sector are increasingly proving inadequate. In this study, we present an innovative and effective model for how institutions can use artificial intelligence to enable groups of people to generate effective solutions to urgent problems more efficiently. We describe a proven collective intelligence method, called Smarter Crowdsourcing, which is designed to channel the collective intelligence of those with expertise about a problem into actionable solutions through crowdsourcing. Then we introduce Policy Synth, an innovative toolkit which leverages AI to make the Smarter Crowdsourcing problem-solving approach both more scalable, more effective and more efficient. Policy Synth is crafted using a human-centric approach, recognizing that AI is a tool to enhance human intelligence and creativity, not replace it. Based on a real-world case study comparing the results of expert crowdsourcing alone with expert sourcing supported by Policy Synth AI agents, we conclude that Smarter Crowdsourcing with Policy Synth presents an effective model for integrating the collective wisdom of human experts and the computational power of AI to enhance and scale up public problem-solving processes.

The potential for artificial intelligence to enhance the performance of groups of people has been a topic of great interest among scholars of collective intelligence. Though many AI toolkits exist, they too often are not fitted to the needs of institutions and policymakers. While many existing approaches view AI as a tool to make crowdsourcing and deliberative processes better and more efficient, Policy Synth goes a step further, recognizing that AI can also be used to synthesize the findings from engagements together with research to develop evidence-based solutions and policies. This study contributes significantly to the fields of collective intelligence, public problem-solving, and AI. The study offers practical tools and insights for institutions looking to engage communities effectively in addressing urgent societal challenges…(More)”

The tensions of data sharing for human rights: A modern slavery case study


Paper by Jamie Hancock et al: “There are calls for greater data sharing to address human rights issues. Advocates claim this will provide an evidence-base to increase transparency, improve accountability, enhance decision-making, identify abuses, and offer remedies for rights violations. However, these well-intentioned efforts have been found to sometimes enable harms against the people they seek to protect. This paper shows issues relating to fairness, accountability, or transparency (FAccT) in and around data sharing can produce such ‘ironic’ consequences. It does so using an empirical case study: efforts to tackle modern slavery and human trafficking in the UK. We draw on a qualitative analysis of expert interviews, workshops, ecosystem mapping exercises, and a desk-based review. The findings show how, in the UK, a large ecosystem of data providers, hubs, and users emerged to process and exchange data from across the country. We identify how issues including legal uncertainties, non-transparent sharing procedures, and limited accountability regarding downstream uses of data may undermine efforts to tackle modern slavery and place victims of abuses at risk of further harms. Our findings help explain why data sharing activities can have negative consequences for human rights, even within human rights initiatives. Moreover, our analysis offers a window into how FAccT principles for technology relate to the human rights implications of data sharing. Finally, we discuss why these tensions may be echoed in other areas where data sharing is pursued for human rights concerns, identifying common features which may lead to similar results, especially where sensitive data is shared to achieve social goods or policy objectives…(More)”.

The revolution shall not be automated: On the political possibilities of activism through data & AI


Article by Isadora Cruxên: “Every other day now, there are headlines about some kind of artificial intelligence (AI) revolution that is taking place. If you read the news or check social media regularly, you have probably come across these too: flashy pieces either trumpeting or warning against AI’s transformative potential. Some headlines promise that AI will fundamentally change how we work and learn or help us tackle critical challenges such as biodiversity conservation and climate change. Others question its intelligence, point to its embedded biases, and draw attention to its extractive labour record and high environmental costs.

Scrolling through these headlines, it is easy to feel like the ‘AI revolution’ is happening to us — or perhaps blowing past us at speed — while we are enticed to take the backseat and let AI-powered chat-boxes like ChatGPT do the work. But the reality is that we need to take the driver’s seat.

If we want to leverage this technology to advance social justice and confront the intersecting socio-ecological challenges before us, we need to stop simply wondering what the AI revolution will do to us and start thinking collectively about how we can produce data and AI models differently. As Mimi Ọnụọha and Mother Cyborg put it in A People’s Guide to AI, “the path to a fair future starts with the humans behind the machines, not the machines themselves.”

Sure, this might seem easier said than done. Most AI research and development is being driven by big tech corporations and start-ups. As Lauren Klein and Catherine D’Ignazio discuss in “Data Feminism for AI” (see “Further reading” at the end for all works cited), the results are models, tools, and platforms that are opaque to users, and that cater to the tech ambitions and profit motives of private actors, with broader societal needs and concerns becoming afterthoughts. There is excellent critical work that explores the extractive practices and unequal power relations that underpin AI production, including its relationship to processes of dataficationcolonial data epistemologies, and surveillance capitalism (to link but a few). Interrogating, illuminating, and challenging these dynamics is paramount if we are to take the driver’s seat and find alternative paths…(More)”.

Societal interaction plans—A tool for enhancing societal engagement of strategic research in Finland


Paper by Kirsi Pulkkinen, Timo Aarrevaara, Mikko Rask, and Markku Mattila: “…we investigate the practices and capacities that define successful societal interaction of research groups with stakeholders in mutually beneficial processes. We studied the Finnish Strategic Research Council’s (SRC) first funded projects through a dynamic governance lens. The aim of the paper is to explore how the societal interaction was designed and commenced at the onset of the projects in order to understand the logic through which the consortia expected broad impacts to occur. The Finnish SRC introduced a societal interaction plan (SIP) approach, which requires research consortia to consider societal interaction alongside research activities in a way that exceeds conventional research plans. Hence, the first SRC projects’ SIPs and the implemented activities and working logics discussed in the interviews provide a window into exploring how active societal interaction reflects the call for dynamic, sustainable practices and new capabilities to better link research to societal development. We found that the capacities of dynamic governance were implemented by integrating societal interaction into research, in particular through a ‘drizzling’ approach. In these emerging practices SIP designs function as platforms for the formation of communities of experts, rather than traditional project management models or mere communication tools. The research groups utilized the benefits of pooling academic knowledge and skills with other types of expertise for mutual gain. They embraced the limits of expertise and reached out to societal partners to truly broker knowledge, and exchange and develop capacities and perspectives to solve grand societal challenges…(More)”.

Are We Ready for the Next Pandemic? Navigating the First and Last Mile Challenges in Data Utilization


Blog by Stefaan Verhulst, Daniela Paolotti, Ciro Cattuto and Alessandro Vespignani:

“Public health officials from around the world are gathering this week in Geneva for a weeklong meeting of the 77th World Health Assembly. A key question they are examining is: Are we ready for the next pandemic? As we have written elsewhere, regarding access to and re-use of data, particularly non-traditional data, for pandemic preparedness and response: we are not. Below, we list ten recommendations to advance access to and reuse of non-traditional data for pandemics, drawing on input from a high-level workshop, held in Brussels, within the context of the ESCAPE program…(More)”

As

Will we run out of data? Limits of LLM scaling based on human-generated data


Paper by Pablo Villalobos: We investigate the potential constraints on LLM scaling posed by the availability of public human-generated text data. We forecast the growing demand for training data based on current trends and estimate the total stock of public human text data. Our findings indicate that if current LLM development trends continue, models will be trained on datasets roughly equal in size to the available stock of public human text data between 2026 and 2032, or slightly earlier if models are overtrained. We explore how progress in language modeling can continue when human-generated text datasets cannot be scaled any further. We argue that synthetic data generation, transfer learning from data-rich domains, and data efficiency improvements might support further progress…(More)”.

Unmasking and Quantifying Power Structures: How Network Analysis Enhances Peace and State-Building Efforts


Blog by Issa Luna Pla: “Critiques of peace and state-building efforts have pointed out the inadequate grasp of the origins of conflict, political unrest, and the intricate dynamics of criminal and illicit networks (Holt and Bouch, 2009Cockayne and Lupel, 2011). This limited understanding has failed to sufficiently weaken their economic and political influence or effectively curb their activities and objectives. A recent study highlights that although punitive approaches may have temporarily diminished the power of these networks, the absence of robust analytical tools has made it difficult to assess the enduring impact of these strategies.

1. Application of Network Analytics in State-Building

The importance of analytics in international peace and state-building operations is becoming increasingly recognized (O’Brien, 2010Gnanguenon, 2021Rød et al., 2023). Analytics, particularly network analysis, plays a crucial role in dissecting and dismantling complex power structures that often undermine peace initiatives and governance reforms. This analytical approach is crucial for revealing and disrupting the entrenched networks that sustain ongoing conflicts or obstruct peace processes. From the experiences in Guatemala, three significant lessons have been learned regarding the need for analytics for regional and thematic priorities in such operations (Waxenecker, 2019). These insights are vital for understanding how to tailor analytical strategies to address specific challenges in conflict-affected areas.

  1. The effectiveness of the International Commission CICIG in dismantling criminal networks was constrained by its lack of advanced analytical tools. This limitation prevented a deeper exploration of the conflicts’ roots and hindered the assessment of the long-term impacts of its strategies. While the CICIG had a systematic approach to understanding criminal networks from a contextual and legal perspective, its action plans lacked comprehensive statistic analytics methodologies, leading to missed opportunities in targeting key strategic players within these networks. High-level arrests were based on available evidence and charges that prosecutors could substantiate, rather than a strategic analysis of actors’ roles and influences within the networks’ dynamics.
  2. Furthermore, the extent of network dismantlement and the lasting effects of imprisonment and financial control of the illicit groups’ assets remain unclear, highlighting the need for predictive analytics to anticipate conflicts and sustainability. Such tools could enable operations to forecast potential disruptions or stability, allowing for data-driven proactive measures to prevent violence or bolster peace.
  3. Lastly, insights derived from network analysis suggest that efforts should focus on enhancing diplomatic negotiations, promoting economic development and social capital, and balancing punitive measures with strategic interventions. By understanding the dynamics and modeling group behavior in conflict zones, negotiations can be better informed by a deep and holistic comprehension of the underlying power structures and motivations. This approach could also help in forecasting recidivism, assessing risks of network reorganization, and evaluating the potential for increased armament, workforce, or empowerment, thereby facilitating more effective and sustainable peacebuilding initiatives.

2. Advancing Legal and Institutional Reforms

Utilizing data sciences in conflicted environments offers unique insights into the behavior of illicit networks and their interactions within the public and private sectors (Morselli et al., 2007Leuprecht and Hall, 2014Campedelli et al., 2019). This systematic approach, grounded in the analysis of years of illicit activities in Guatemala, highlights the necessity of rethinking traditional legal and institutional frameworks…(More)”.