New York vs Big Tech: Lawmakers Float Data Tax in Privacy Push


GovTech article: “While New York is not the first state to propose data privacy legislation, it is the first to propose a data privacy bill that would implement a tax on big tech companies that benefit from the sale of New Yorkers’ consumer data.

Known as the Data Economy Labor Compensation and Accountability Act, the bill looks to enact a 2 percent tax on annual receipts earned off New York residents’ data. This tax and other rules and regulations aimed at safeguarding citizens’ data will be enforced by a newly created Office of Consumer Data Protection outlined in the bill.

The office would require all data controllers and processors to register annually in order to meet state compliance requirements. Failure to do so, the bill states, would result in fines.

As for the tax, all funds will be put toward improving education and closing the digital divide.

“The revenue from the tax will be put towards digital literacy, workforce redevelopment, STEAM education (science, technology, engineering, arts and mathematics), K-12 education, workforce reskilling and retraining,” said Sen. Andrew Gounardes, D-22.

As for why the bill is being proposed now, Gounardes said, “Every day, big tech companies like Amazon, Apple, Facebook and Google capitalize on the unpaid labor of billions of people to create their products and services through targeted advertising and artificial intelligence.”…(More)”

The value of data matching for public poverty initiatives: a local voucher program example


Paper by Sarah Giest, Jose M. Miotto and Wessel Kraaij: “The recent surge of data-driven methods in social policy have created new opportunities to assess existing poverty programs. The expectation is that the combination of advanced methods and more data can calculate the effectiveness of public interventions more accurately and tailor local initiatives accordingly. Specifically, nonmonetary indicators are increasingly being measured at micro levels in order to target social exclusion in combination with poverty. However, the multidimensional character of poverty, local context, and data matching pose challenges to data-driven analyses. By linking Dutch household-level data with policy-initiative-specific data at local level, we present an explorative study on the uptake of a local poverty pass. The goal is to unravel pass usage in terms of household income and location as well as the age of users. We find that income and age play a role in whether the pass is used, and usage differs per neighborhood. With this, the paper feeds into the discourse on how to operationalize and design data matching work in the multidimensional space of poverty and nonmonetary government initiatives….(More)”.

Bridging the digital divide for underserved communities


Report by Deloitte: “…This “digital divide” was first noted more than 25 years ago as consumer communications needs shifted from landline voice to internet access. The economics of broadband spawned availability, adoption, and affordability disparities between rural and urban geographies and between lower- and higher-income segments. Today, the digital divide still presents a significant gap after more than $100 billion of infrastructure investment has been allocated by the US government over the past decade to address this issue. The current debate regarding additional funds for broadband deployment implies that further examination is warranted regarding how to get to broadband for all and achieve the resulting economic prosperity.


Quantifying the economic impact of bridging the digital divide clearly shows the criticality of broadband infrastructure to the US economy. Deloitte developed economic models to evaluate the relationship between broadband and economic growth. Our models indicate that a 10-percentage-point increase of broadband penetration in 2016 would have resulted in more than 806,000 additional jobs in 2019, or an average annual increase of 269,000 jobs. Moreover, we found a strong correlation between broadband availability and jobs and GDP growth. A 10-percentage-point increase of broadband access in 2014 would have resulted in more than 875,000 additional US jobs and $186B more in economic output in 2019. The analysis also showed that higher broadband speeds drive noticeable improvements in job growth, albeit with diminishing returns. As an example, the gain in jobs from 50 to 100 Mbps is more than the gain in jobs from 100 to 150 Mbps….(More)”.

Global inequality remotely sensed


Paper by M. Usman Mirza et al: “Economic inequality is notoriously difficult to quantify as reliable data on household incomes are missing for most of the world. Here, we show that a proxy for inequality based on remotely sensed nighttime light data may help fill this gap. Individual households cannot be remotely sensed. However, as households tend to segregate into richer and poorer neighborhoods, the correlation between light emission and economic thriving shown in earlier studies suggests that spatial variance of remotely sensed light per person might carry a signal of economic inequality.

To test this hypothesis, we quantified Gini coefficients of the spatial variation in average nighttime light emitted per person. We found a significant relationship between the resulting light-based inequality indicator and existing estimates of net income inequality. This correlation between light-based Gini coefficients and traditional estimates exists not only across countries, but also on a smaller spatial scale comparing the 50 states within the United States. The remotely sensed character makes it possible to produce high-resolution global maps of estimated inequality. The inequality proxy is entirely independent from traditional estimates as it is based on observed light emission rather than self-reported household incomes. Both are imperfect estimates of true inequality. However, their independent nature implies that the light-based proxy could be used to constrain uncertainty in traditional estimates. More importantly, the light-based Gini maps may provide an estimate of inequality where previously no data were available at all….(More)”.

Knowledge Assets in Government


Draft Guidance by HM Treasury (UK): “Embracing innovation is critical to the future of the UK’s economy, society and its place in the world. However, one of the key findings of HM Treasury’s knowledge assets report published at Budget 2018, was that there was little clear strategic guidance on how to realise value from intangibles or knowledge assets such as intellectual property, research & development, and data, which are pivotal for innovation.

This new draft guidance establishes the concept of managing knowledge assets in government and the public sector. It focuses on how to identify, protect and support their exploitation to help maximise the social, economic and financial value they generate.

The guidance provided in this document is intended to advise and support organisations in scope with their knowledge asset management and, in turn, fulfil their responsibilities as set out in MPM. While the guidance clarifies best practice and provides recommendations, these should not be interpreted as additional rules. The draft guidance recommends that organisations:

  • develop a strategy for managing their knowledge assets, as part of their wider asset management strategy (a requirement of MPM)
  • appoint a Senior Responsible Owner (SRO) for knowledge assets who has clear responsibility for the organisation’s knowledge asset management strategy…(More)“.

Tracking Economic Activity in Response to the COVID-19 using nighttime Lights


Paper by Mark Roberts: “Over the last decade, nighttime lights – artificial lighting at night that is associated with human activity and can be detected by satellite sensors – have become a proxy for monitoring economic activity. To examine how the COVID-19 crisis has affected economic activity in Morocco, we calculated monthly lights estimates for both the country overall and at a sub-national level. By examining the intensity of Morocco’s lights in comparison with the quarterly GDP data at the national level, we are also able to confirm that nighttime lights are able to track movements in real economic activity for Morocco….(More)”.

Foundations of complexity economics


Article by W. Brian Arthur: “Conventional, neoclassical economics assumes perfectly rational agents (firms, consumers, investors) who face well-defined problems and arrive at optimal behaviour consistent with — in equilibrium with — the overall outcome caused by this behaviour. This rational, equilibrium system produces an elegant economics, but is restrictive and often unrealistic. Complexity economics relaxes these assumptions. It assumes that agents differ, that they have imperfect information about other agents and must, therefore, try to make sense of the situation they face. Agents explore, react and constantly change their actions and strategies in response to the outcome they mutually create. The resulting outcome may not be in equilibrium and may display patterns and emergent phenomena not visible to equilibrium analysis. The economy becomes something not given and existing but constantly forming from a developing set of actions, strategies and beliefs — something not mechanistic, static, timeless and perfect but organic, always creating itself, alive and full of messy vitality….(More)”.

Unlocking Responsible Access to Data to Increase Equity and Economic Mobility


Report by the Markle Foundation and the Bill and Melinda Gates Foundation (BMGF): “Economic mobility remains elusive for far too many Americans and has been declining for several decades. A person born in 1980 is 50% less likely to earn more than their parents than a person born in 1950 is. While all children who grow up in low-opportunity neighborhoods face mobility challenges, racial, ethnic, and gender disparities add even more complexity. In 99% of neighborhoods in America, Black boys earn less, and are more likely to fall into poverty, than white boys, even when they grow up on the same block, attend the same schools, and have the same family income. In 2016, a Pew Research study found that the median wealth of white households was ten times the median wealth of Black households and eight times that of Hispanic households. The COVID-19 pandemic has further exacerbated existing disparities, as communities of color suffer higher exposure and death rates, along with greater job loss and increased food and housing insecurity.

Reversing this overall decline to address the persistent racial, ethnic, and gender gaps in economic mobility is one of the great challenges of our time. Some progress has been made in identifying the causes and potential solutions to declining mobility, yet policymakers, researchers, and the public still lack access to critical data necessary to understand which policies, programs, interventions, and investments are most effective at creating opportunity for students and workers, particularly those struggling with intergenerational poverty. Data collected across all levels of governments, nonprofit organizations, and private sector companies can help answer foundational policy and research questions on what drives economic mobility. There are promising efforts underway to improve government data infrastructure and processes at both the federal and state levels, but critical data often remains siloed, and legitimate concerns about privacy and civil liberties can make data difficult to share. Often, data on vulnerable populations most in need of services is of poor quality or is not collected at all.

To tackle this challenge, the Bill and Melinda Gates Foundation (BMGF) and the Markle Foundation (Markle) spent much of 2020 working with a diverse range of experts to identify strategic opportunities to accelerate progress towards unlocking data to improve policymaking, answer foundational research questions, and ensure that individuals can easily and responsibly access the information they need to make informed decisions in a rapidly changing environment….(More)”.

European Data Economy: Between Competition and Regulation


Report by René Arnold, Christian Hildebrandt, and Serpil Taş: “Data and its economic impact permeates all sectors of the economy. The data economy is not a new sector, but more like a challenge for all firms to compete and innovate as part of a new wave of economic value creation.

With data playing an increasingly important role across all sectors of the economy, the results of this report point European policymakers to promote the development and adoption of unified reference architectures. These architectures constitute a technology-neutral and cross-sectoral approach that will enable companies small and large to compete and to innovate—unlocking the economic potential of data capture in an increasingly digitized world.

Data access appears to be less of a hindrance to a thriving data economy due to the net increase in capabilities in data capture, elevation, and analysis. What does prove difficult for firms is discovering existing datasets and establishing their suitability for achieving their economic objectives. Reference architectures can facilitate this process as they provide a framework to locate potential providers of relevant datasets and carry sufficient additional information (metadata) about datasets to enable firms to understand whether a particular dataset, or parts of it, fits their purpose.

Whether third-party data access is suitable to solve a specific business task in the first place ought to be a decision at the discretion of the economic actors involved. As our report underscores, data captured in one context with a specific purpose may not be fit for another context or another purpose. Consequently, a firm has to evaluate case-by-case whether first-party data capture, third-party data access, or a mixed approach is the best solution. This evaluation will naturally depend on whether there is any other firm capturing data suitable for the task that is willing to negotiate conditions for third-party access to this data. Unified data architectures may also lower the barriers for a firm capturing suitable data to engage in negotiations, since its adoption will lower the costs of making the data ready for a successful exchange. Such architectures may further integrate licensing provisions ensuring that data, once exchanged, is not used beyond the agreed purpose. It can also bring in functions that improve the discoverability of potential data providers….(More)”.

Economic complexity theory and applications


Paper by César A. Hidalgo: “Economic complexity methods have become popular tools in economic geography, international development and innovation studies. Here, I review economic complexity theory and applications, with a particular focus on two streams of literature: the literature on relatedness, which focuses on the evolution of specialization patterns, and the literature on metrics of economic complexity, which uses dimensionality reduction techniques to create metrics of economic sophistication that are predictive of variations in income, economic growth, emissions and income inequality….(More)”.