Creating a digital commons


Report by the IPPR (UK): ” There are, today, almost no parts of life that are untouched by the presence of data. Virtually every action we take produces some form of digital trail – our phones track our locations, our browsers track searches, our social network apps log our friends and family – even when we are only dimly aware of it.

It is the combination of this near-ubiquitous gathering of data with fast processing that has generated the economic and social transformation of the last few years – one that, if current developments in artificial intelligence (AI) continue, is only likely to accelerate. Combined with data-enabled technology, from the internet of things to 3D printing, we are potentially on the cusp of a radically different economy and society.

As the world emerges from the first phase of the pandemic, the demands for a socially just and sustainable recovery have grown. The data economy can and should be an essential part of that reconstruction, from the efficient management of energy systems to providing greater flexibility in working time. However, without effective public policy, and democratic oversight and management, the danger is that the tendencies in the data economy that we have already seen towards monopoly and opacity – reinforced, so far, by the crisis – will continue to dominate. It is essential, then, that planning for a fairer, more sustainable economy in the future build in active public policy for data…

This report focusses closely on data as the fundamental building block of the emerging economy, and argues that its use, management, ownership, and control as critical to shaping the future…(More)”.

Public perceptions on data sharing: key insights from the UK and the USA


Paper by Saira Ghafur, Jackie Van Dael, Melanie Leis and Ara Darzi, and Aziz Sheikh: “Data science and artificial intelligence (AI) have the potential to transform the delivery of health care. Health care as a sector, with all of the longitudinal data it holds on patients across their lifetimes, is positioned to take advantage of what data science and AI have to offer. The current COVID-19 pandemic has shown the benefits of sharing data globally to permit a data-driven response through rapid data collection, analysis, modelling, and timely reporting.

Despite its obvious advantages, data sharing is a controversial subject, with researchers and members of the public justifiably concerned about how and why health data are shared. The most common concern is privacy; even when data are (pseudo-)anonymised, there remains a risk that a malicious hacker could, using only a few datapoints, re-identify individuals. For many, it is often unclear whether the risks of data sharing outweigh the benefits.

A series of surveys over recent years indicate that the public holds a range of views about data sharing. Over the past few years, there have been several important data breaches and cyberattacks. This has resulted in patients and the public questioning the safety of their data, including the prospect or risk of their health data being shared with unauthorised third parties.

We surveyed people across the UK and the USA to examine public attitude towards data sharing, data access, and the use of AI in health care. These two countries were chosen as comparators as both are high-income countries that have had substantial national investments in health information technology (IT) with established track records of using data to support health-care planning, delivery, and research. The UK and USA, however, have sharply contrasting models of health-care delivery, making it interesting to observe if these differences affect public attitudes.

Willingness to share anonymised personal health information varied across receiving bodies (figure). The more commercial the purpose of the receiving institution (eg, for an insurance or tech company), the less often respondents were willing to share their anonymised personal health information in both the UK and the USA. Older respondents (≥35 years) in both countries were generally less likely to trust any organisation with their anonymised personal health information than younger respondents (<35 years)…

Despite the benefits of big data and technology in health care, our findings suggest that the rapid development of novel technologies has been received with concern. Growing commodification of patient data has increased awareness of the risks involved in data sharing. There is a need for public standards that secure regulation and transparency of data use and sharing and support patient understanding of how data are used and for what purposes….(More)”.

Project Patient Voice


Press Release: “The U.S. Food and Drug Administration today launched Project Patient Voice, an initiative of the FDA’s Oncology Center of Excellence (OCE). Through a new website, Project Patient Voice creates a consistent source of publicly available information describing patient-reported symptoms from cancer trials for marketed treatments. While this patient-reported data has historically been analyzed by the FDA during the drug approval process, it is rarely included in product labeling and, therefore, is largely inaccessible to the public.

“Project Patient Voice has been initiated by the Oncology Center of Excellence to give patients and health care professionals unique information on symptomatic side effects to better inform their treatment choices,” said FDA Principal Deputy Commissioner Amy Abernethy, M.D., Ph.D. “The Project Patient Voice pilot is a significant step in advancing a patient-centered approach to oncology drug development. Where patient-reported symptom information is collected rigorously, this information should be readily available to patients.” 

Patient-reported outcome (PRO) data is collected using questionnaires that patients complete during clinical trials. These questionnaires are designed to capture important information about disease- or treatment-related symptoms. This includes how severe or how often a symptom or side effect occurs.

Patient-reported data can provide additional, complementary information for health care professionals to discuss with patients, specifically when discussing the potential side effects of a particular cancer treatment. In contrast to the clinician-reported safety data in product labeling, the data in Project Patient Voice is obtained directly from patients and can show symptoms before treatment starts and at multiple time points while receiving cancer treatment. 

The Project Patient Voice website will include a list of cancer clinical trials that have available patient-reported symptom data. Each trial will include a table of the patient-reported symptoms collected. Each patient-reported symptom can be selected to display a series of bar and pie charts describing the patient-reported symptom at baseline (before treatment starts) and over the first 6 months of treatment. This information provides insights into side effects not currently available in standard FDA safety tables, including existing symptoms before the start of treatment, symptoms over time, and the subset of patients who did not have a particular symptom prior to starting treatment….(More)”.

Measuring Movement and Social Contact with Smartphone Data: A Real-Time Application to Covid-19


Paper by Victor Couture et al: “Tracking human activity in real time and at fine spatial scale is particularly valuable during episodes such as the COVID-19 pandemic. In this paper, we discuss the suitability of smartphone data for quantifying movement and social contact. We show that these data cover broad sections of the US population and exhibit movement patterns similar to conventional survey data. We develop and make publicly available a location exposure index that summarizes county-to-county movements and a device exposure index that quantifies social contact within venues. We use these indices to document how pandemic-induced reductions in activity vary across people and places….(More)”.

The Coronavirus and Innovation


Essay by Scott E. Page: “The total impact of the coronavirus pandemic—the loss of life and the economic, social, and psychological costs arising from both the pandemic itself and the policies implemented to prevent its spread—defy any characterization. Though the pandemic continues to unsettle, disrupt, and challenge communities, we might take a moment to appreciate and applaud the diversity, breadth, and scope of our responses—from individual actions to national policies—and even more important, to reflect on how they will produce a post–Covid-19 world far better than the world that preceded it.

In this brief essay, I describe how our adaptive responses to the coronavirus will lead to beneficial policy innovations. I do so from the perspective of a many-model thinker. By that I mean that I will use several formal models to theoretically elucidate the potential pathways to creating a better world. I offer this with the intent that it instills optimism that our current efforts to confront this tragic and difficult challenge will do more than combat the virus now and teach us how to combat future viruses. They will, in the long run, result in an enormous number of innovations in policy, business practices, and our daily lives….(More)”.

What Ever Happened to Digital Contact Tracing?


Chas Kissick, Elliot Setzer, and Jacob Schulz at Lawfare: “In May of this year, Prime Minister Boris Johnson pledged the United Kingdom would develop a “world beating” track and trace system by June 1 to stop the spread of the novel coronavirus. But on June 18, the government quietly abandoned its coronavirus contact-tracing app, a key piece of the “world beating” strategy, and instead promised to switch to a model designed by Apple and Google. The delayed app will not be ready until winter, and the U.K.’s Junior Health Minister told reporters that “it isn’t a priority for us at the moment.” When Johnson came under fire in Parliament for the abrupt U-turn, he replied: “I wonder whether the right honorable and learned Gentleman can name a single country in the world that has a functional contact tracing app—there isn’t one.”

Johnson’s rebuttal is perhaps a bit reductive, but he’s not that far off.

You probably remember the idea of contact-tracing apps: the technological intervention that seemed to have the potential to save lives while enabling a hamstrung economy to safely inch back open; it was a fixation of many public health and privacy advocates; it was the thing that was going to help us get out of this mess if we could manage the risks.

Yet nearly three months after Google and Apple announced with great fanfare their partnership to build a contact-tracing API, contact-tracing apps have made an unceremonious exit from the front pages of American newspapers. Countries, states and localities continue to try to develop effective digital tracing strategies. But as Jonathan Zittrain puts it, the “bigger picture momentum appears to have waned.”

What’s behind contact-tracing apps’ departure from the spotlight? For one, there’s the onset of a larger pandemic apathy in the U.S; many politicians and Americans seem to have thrown up their hands or put all their hopes in the speedy development of a vaccine. Yet, the apps haven’t even made much of a splash in countries that havetaken the pandemic more seriously. Anxieties about privacy persist. But technical shortcomings in the apps deserve the lion’s share of the blame. Countries have struggled to get bespoke apps developed by government technicians to work on Apple phones. The functionality of some Bluetooth-enabled models vary widely depending on small changes in phone positioning. And most countries have only convinced a small fraction of their populace to use national tracing apps.

Maybe it’s still possible that contact-tracing apps will make a miraculous comeback and approach the level of efficacy observers once anticipated.

But even if technical issues implausibly subside, the apps are operating in a world of unknowns.

Most centrally, researchers still have no real idea what level of adoption is required for the apps to actually serve their function. Some estimates suggest that 80 percent of current smartphone owners in a given area would need to use an app and follow its recommendations for digital contact tracing to be effective. But other researchers have noted that the apps could slow the rate of infections even if little more than 10 percent of a population used a tracing app. It will be an uphill battle even to hit the 10 percent mark in America, though. Survey data show that fewer than three in 10 Americans intend to use contact-tracing apps if they become available…(More).

Adolescent Mental Health: Using A Participatory Mapping Methodology to Identify Key Priorities for Data Collaboration


Blog by Alexandra Shaw, Andrew J. Zahuranec, Andrew Young, Stefaan G. Verhulst, Jennifer Requejo, Liliana Carvajal: “Adolescence is a unique stage of life. The brain undergoes rapid development; individuals face new experiences, relationships, and environments. These events can be exciting, but they can also be a source of instability and hardship. Half of all mental conditions manifest by early adolescence and between 10 and 20 percent of all children and adolescents report mental health conditions. Despite the increased risks and concerns for adolescents’ well-being, there remain significant gaps in availability of data at the country level for policymakers to address these issues.

In June, The GovLab partnered with colleagues at UNICEF’s Health and HIV team in the Division of Data, Analysis, Planning & Monitoring and the Data for Children Collaborative — a collaboration between UNICEF, the Scottish Government, and the University of Edinburgh — to design and apply a new methodology of participatory mapping and prioritization of key topics and issues associated with adolescent mental health that could be addressed through enhanced data collaboration….

The event led to three main takeaways. First, the topic mapping allows participants to deliberate and prioritize the various aspects of adolescent mental health in a more holistic manner. Unlike the “blind men and the elephant” parable, a topic map allows the participants to see and discuss  the interrelated parts of the topic, including those which they might be less familiar with.

Second, the workshops demonstrated the importance of tapping into distributed expertise via participatory processes. While the topic map provided a starting point, the inclusion of various experts allowed the findings of the document to be reviewed in a rapid, legitimate fashion. The diverse inputs helped ensure the individual aspects could be prioritized without a perspective being ignored.

Lastly, the approach showed the importance of data initiatives being driven and validated by those individuals representing the demand. By soliciting the input of those who would actually use the data, the methodology ensured data initiatives focused on the aspects thought to be most relevant and of greatest importance….(More)”

German coronavirus experiment enlists help of concertgoers


Philip Oltermann at the Guardian: “German scientists are planning to equip 4,000 pop music fans with tracking gadgets and bottles of fluorescent disinfectant to get a clearer picture of how Covid-19 could be prevented from spreading at large indoor concerts.

As cultural mass gatherings across the world remain on hold for the foreseeable future, researchers in eastern Germany are recruiting volunteers for a “coronavirus experiment” with the singer-songwriter Tim Bendzko, to be held at an indoor stadium in the city of Leipzig on 22 August.

Participants, aged between 18 and 50, will wear matchstick-sized “contact tracer” devices on chains around their necks that transmit a signal at five-second intervals and collect data on each person’s movements and proximity to other members of the audience.

Inside the venue, they will also be asked to disinfect their hands with a fluorescent hand-sanitiser – designed to not just add a layer of protection but allow scientists to scour the venue with UV lights after the concerts to identify surfaces where a transmission of the virus through smear infection is most likely to take place.

Vapours from a fog machine will help visualise the possible spread of coronavirus via aerosols, which the scientists will try to predict via computer-generated models in advance of the event.

The €990,000 cost of the Restart-19 project will be shouldered between the federal states of Saxony and Saxony-Anhalt. The project’s organisers say the aim is to “identify a framework” for how larger cultural and sports events could be held “without posing a danger for the population” after 30 September….

To stop the Leipzig experiment from becoming the source of a new outbreak, signed-up volunteers will be sent a DIY test kit and have a swab at a doctor’s practice or laboratory 48 hours before the concert starts. Those who cannot show proof of a negative test at the door will be denied entry….(More)”.

Coronavirus: how the pandemic has exposed AI’s limitations


Kathy Peach at The Conversation: “It should have been artificial intelligence’s moment in the sun. With billions of dollars of investment in recent years, AI has been touted as a solution to every conceivable problem. So when the COVID-19 pandemic arrived, a multitude of AI models were immediately put to work.

Some hunted for new compounds that could be used to develop a vaccine, or attempted to improve diagnosis. Some tracked the evolution of the disease, or generated predictions for patient outcomes. Some modelled the number of cases expected given different policy choices, or tracked similarities and differences between regions.

The results, to date, have been largely disappointing. Very few of these projects have had any operational impact – hardly living up to the hype or the billions in investment. At the same time, the pandemic highlighted the fragility of many AI models. From entertainment recommendation systems to fraud detection and inventory management – the crisis has seen AI systems go awry as they struggled to adapt to sudden collective shifts in behaviour.

The unlikely hero

The unlikely hero emerging from the ashes of this pandemic is instead the crowd. Crowds of scientists around the world sharing data and insights faster than ever before. Crowds of local makers manufacturing PPE for hospitals failed by supply chains. Crowds of ordinary people organising through mutual aid groups to look after each other.

COVID-19 has reminded us of just how quickly humans can adapt existing knowledge, skills and behaviours to entirely new situations – something that highly-specialised AI systems just can’t do. At least yet….

In one of the experiments, researchers from the Istituto di Scienze e Tecnologie della Cognizione in Rome studied the use of an AI system designed to reduce social biases in collective decision-making. The AI, which held back information from the group members on what others thought early on, encouraged participants to spend more time evaluating the options by themselves.

The system succeeded in reducing the tendency of people to “follow the herd” by failing to hear diverse or minority views, or challenge assumptions – all of which are criticisms that have been levelled at the British government’s scientific advisory committees throughout the pandemic…(More)”.

Responsible, practical genomic data sharing that accelerates research


James Brian Byrd, Anna C. Greene, Deepashree Venkatesh Prasad, Xiaoqian Jiang & Casey S. Greene in Nature: “Data sharing anchors reproducible science, but expectations and best practices are often nebulous. Communities of funders, researchers and publishers continue to grapple with what should be required or encouraged. To illuminate the rationales for sharing data, the technical challenges and the social and cultural challenges, we consider the stakeholders in the scientific enterprise. In biomedical research, participants are key among those stakeholders. Ethical sharing requires considering both the value of research efforts and the privacy costs for participants. We discuss current best practices for various types of genomic data, as well as opportunities to promote ethical data sharing that accelerates science by aligning incentives….(More)”.