Self-interest and data protection drive the adoption and moral acceptability of big data technologies: A conjoint analysis approach


Paper by Rabia I.Kodapanakka, lMark J.Brandt, Christoph Kogler, and Iljavan Beest: “Big data technologies have both benefits and costs which can influence their adoption and moral acceptability. Prior studies look at people’s evaluations in isolation without pitting costs and benefits against each other. We address this limitation with a conjoint experiment (N = 979), using six domains (criminal investigations, crime prevention, citizen scores, healthcare, banking, and employment), where we simultaneously test the relative influence of four factors: the status quo, outcome favorability, data sharing, and data protection on decisions to adopt and perceptions of moral acceptability of the technologies.

We present two key findings. (1) People adopt technologies more often when data is protected and when outcomes are favorable. They place equal or more importance on data protection in all domains except healthcare where outcome favorability has the strongest influence. (2) Data protection is the strongest driver of moral acceptability in all domains except healthcare, where the strongest driver is outcome favorability. Additionally, sharing data lowers preference for all technologies, but has a relatively smaller influence. People do not show a status quo bias in the adoption of technologies. When evaluating moral acceptability, people show a status quo bias but this is driven by the citizen scores domain. Differences across domains arise from differences in magnitude of the effects but the effects are in the same direction. Taken together, these results highlight that people are not always primarily driven by self-interest and do place importance on potential privacy violations. They also challenge the assumption that people generally prefer the status quo….(More)”.

The Story of Goldilocks and Three Twitter’s APIs: A Pilot Study on Twitter Data Sources and Disclosure


Paper by Yoonsang Kim, Rachel Nordgren and Sherry Emery: “Public health and social science increasingly use Twitter for behavioral and marketing surveillance. However, few studies provide sufficient detail about Twitter data collection to allow either direct comparisons between studies or to support replication.

The three primary application programming interfaces (API) of Twitter data sources are Streaming, Search, and Firehose. To date, no clear guidance exists about the advantages and limitations of each API, or about the comparability of the amount, content, and user accounts of retrieved tweets from each API. Such information is crucial to the validity, interpretation, and replicability of research findings.

This study examines whether tweets collected using the same search filters over the same time period, but calling different APIs, would retrieve comparable datasets. We collected tweets about anti-smoking, e-cigarettes, and tobacco using the aforementioned APIs. The retrieved tweets largely overlapped between three APIs, but each also retrieved unique tweets, and the extent of overlap varied over time and by topic, resulting in different trends and potentially supporting diverging inferences. Researchers need to understand how different data sources can influence both the amount, content, and user accounts of data they retrieve from social media, in order to assess the implications of their choice of data source…(More)”.

Research co-design in health: a rapid overview of reviews


Paper by Peter Slattery, Alexander K. Saeri & Peter Bragge: “Billions of dollars are lost annually in health research that fails to create meaningful benefits for patients. Engaging in research co-design – the meaningful involvement of end-users in research – may help address this research waste. This rapid overview of reviews addressed three related questions, namely (1) what approaches to research co-design exist in health settings? (2) What activities do these research co-design approaches involve? (3) What do we know about the effectiveness of existing research co-design approaches? The review focused on the study planning phase of research, defined as the point up to which the research question and study design are finalised….

A total of 26 records (reporting on 23 reviews) met the inclusion criteria. Reviews varied widely in their application of ‘research co-design’ and their application contexts, scope and theoretical foci. The research co-design approaches identified involved interactions with end-users outside of study planning, such as recruitment and dissemination. Activities involved in research co-design included focus groups, interviews and surveys. The effectiveness of research co-design has rarely been evaluated empirically or experimentally; however, qualitative exploration has described the positive and negative outcomes associated with co-design. The research provided many recommendations for conducting research co-design, including training participating end-users in research skills, having regular communication between researchers and end-users, setting clear end-user expectations, and assigning set roles to all parties involved in co-design…

Research co-design appears to be widely used but seldom described or evaluated in detail. Though it has rarely been tested empirically or experimentally, existing research suggests that it can benefit researchers, practitioners, research processes and research outcomes. Realising the potential of research co-design may require the development of clearer and more consistent terminology, better reporting of the activities involved and better evaluation….(More)”.

Change of heart: how algorithms could revolutionise organ donations


Tej Kohli at TheNewEconomy: “Artificial intelligence (AI) and biotechnology are both on an exponential growth trajectory, with the potential to improve how we experience our lives and even to extend life itself. But few have considered how these two frontier technologies could be brought together symbiotically to tackle global health and environmental challenges…

For example, combination technologies could tackle a global health issue such as organ donation. According to the World Health Organisation, an average of around 100,800 solid organ transplants were performed each year as of 2008. Yet, in the US, there are nearly 113,000 people waiting for a life-saving organ transplant, while thousands of good organs are discarded each year. For years, those in need of a kidney transplant had limited options: they either had to find a willing and biologically viable living donor, or wait for a viable deceased donor to show up in their local hospital.

But with enough patients and willing donors, big data and AI make it possible to facilitate far more matches than this one-to-one system allows, through a system of paired kidney donation. Patients can now procure a donor who is not a biological fit and still receive a kidney, because AI can match donors to recipients across a massive array of patient-donor relationships. In fact, a single person who steps forward to donate a kidney – to a loved one or even to a stranger – can set off a domino effect that saves dozens of lives by resolving the missing link in a long chain of pairings….

The moral and ethical implications of today’s frontier technologies are far-reaching. Fundamental questions have not been adequately addressed. How will algorithms weigh the needs of poor and wealthy patients? Should a donor organ be sent to a distant patient – potentially one in a different country – with a low rejection risk or to a nearby patient whose rejection risk is only slightly higher?

These are important questions, but I believe we should get combination technologies up and working, and then decide on the appropriate controls. The matching power of AI means that eight lives could be saved by just one deceased organ donor; innovations in biotechnology could ensure that organs are never wasted. The faster these technologies advance, the more lives we can save…(More)”.

How does participating in a deliberative citizens panel on healthcare priority setting influence the views of participants?


Paper by Vivian Reckers-Droog et al: “A deliberative citizens panel was held to obtain insight into criteria considered relevant for healthcare priority setting in the Netherlands. Our aim was to examine whether and how panel participation influenced participants’ views on this topic. Participants (n = 24) deliberated on eight reimbursement cases in September and October, 2017. Using Q methodology, we identified three distinct viewpoints before (T0) and after (T1) panel participation. At T0, viewpoint 1 emphasised that access to healthcare is a right and that prioritisation should be based solely on patients’ needs. Viewpoint 2 acknowledged scarcity of resources and emphasised the importance of treatment-related health gains. Viewpoint 3 focused on helping those in need, favouring younger patients, patients with a family, and treating diseases that heavily burden the families of patients. At T1, viewpoint 1 had become less opposed to prioritisation and more considerate of costs. Viewpoint 2 supported out-of-pocket payments more strongly. A new viewpoint 3 emerged that emphasised the importance of cost-effectiveness and that prioritisation should consider patient characteristics, such as their age. Participants’ views partly remained stable, specifically regarding equal access and prioritisation based on need and health gains. Notable changes concerned increased support for prioritisation, consideration of costs, and cost-effectiveness. Further research into the effects of deliberative methods is required to better understand how they may contribute to the legitimacy of and public support for allocation decisions in healthcare….(More)”.

An AI Epidemiologist Sent the First Warnings of the Wuhan Virus


Eric Niiler at Wired: “On January 9, the World Health Organization notified the public of a flu-like outbreak in China: a cluster of pneumonia cases had been reported in Wuhan, possibly from vendors’ exposure to live animals at the Huanan Seafood Market. The US Centers for Disease Control and Prevention had gotten the word out a few days earlier, on January 6. But a Canadian health monitoring platform had beaten them both to the punch, sending word of the outbreak to its customers on December 31.

BlueDot uses an AI-driven algorithm that scours foreign-language news reports, animal and plant disease networks, and official proclamations to give its clients advance warning to avoid danger zones like Wuhan.

Speed matters during an outbreak, and tight-lipped Chinese officials do not have a good track record of sharing information about diseases, air pollution, or natural disasters. But public health officials at WHO and the CDC have to rely on these very same health officials for their own disease monitoring. So maybe an AI can get there faster. “We know that governments may not be relied upon to provide information in a timely fashion,” says Kamran Khan, BlueDot’s founder and CEO. “We can pick up news of possible outbreaks, little murmurs or forums or blogs of indications of some kind of unusual events going on.”…

The firm isn’t the first to look for an end-run around public health officials, but they are hoping to do better than Google Flu Trends, which was euthanized after underestimating the severity of the 2013 flu season by 140 percent. BlueDot successfully predicted the location of the Zika outbreak in South Florida in a publication in the British medical journal The Lancet….(More)”.

Barriers to Working With National Health Service England’s Open Data


Paper by Ben Goldacre and Seb Bacon: “Open data is information made freely available to third parties in structured formats without restrictive licensing conditions, permitting commercial and noncommercial organizations to innovate. In the context of National Health Service (NHS) data, this is intended to improve patient outcomes and efficiency. EBM DataLab is a research group with a focus on online tools which turn our research findings into actionable monthly outputs. We regularly import and process more than 15 different NHS open datasets to deliver OpenPrescribing.net, one of the most high-impact use cases for NHS England’s open data, with over 15,000 unique users each month. In this paper, we have described the many breaches of best practices around NHS open data that we have encountered. Examples include datasets that repeatedly change location without warning or forwarding; datasets that are needlessly behind a “CAPTCHA” and so cannot be automatically downloaded; longitudinal datasets that change their structure without warning or documentation; near-duplicate datasets with unexplained differences; datasets that are impossible to locate, and thus may or may not exist; poor or absent documentation; and withholding of data for dubious reasons. We propose new open ways of working that will support better analytics for all users of the NHS. These include better curation, better documentation, and systems for better dialogue with technical teams….(More)”.

Hospitals Give Tech Giants Access to Detailed Medical Records


Melanie Evans at the Wall Street Journal: “Hospitals have granted Microsoft Corp., International Business Machines and Amazon.com Inc. the ability to access identifiable patient information under deals to crunch millions of health records, the latest examples of hospitals’ growing influence in the data economy.

The breadth of access wasn’t always spelled out by hospitals and tech giants when the deals were struck.

The scope of data sharing in these and other recently reported agreements reveals a powerful new role that hospitals play—as brokers to technology companies racing into the $3 trillion health-care sector. Rapid digitization of health records and privacy laws enabling companies to swap patient data have positioned hospitals as a primary arbiter of how such sensitive data is shared. 

“Hospitals are massive containers of patient data,” said Lisa Bari, a consultant and former lead for health information technology for the Centers for Medicare and Medicaid Services Innovation Center. 

Hospitals can share patient data as long as they follow federal privacy laws, which contain limited consumer protections, she said. “The data belongs to whoever has it.”…

Digitizing patients’ medical histories, laboratory results and diagnoses has created a booming market in which tech giants are looking to store and crunch data, with potential for groundbreaking discoveries and lucrative products.

There is no indication of wrongdoing in the deals. Officials at the companies and hospitals say they have safeguards to protect patients. Hospitals control data, with privacy training and close tracking of tech employees with access, they said. Health data can’t be combined independently with other data by tech companies….(More)”.

Social media firms 'should hand over data amid suicide risk'


Denis Campbell at the Guardian: “Social media firms such as Facebook and Instagram should be forced to hand over data about who their users are and why they use the sites to reduce suicide among children and young people, psychiatrists have said.

The call from the Royal College of Psychiatrists comes as ministers finalise plans to crack down on issues caused by people viewing unsavoury material and messages online.

The college, which represents the UK’s 18,000 psychiatrists, wants the government to make social media platforms hand over the data to academics so that they can study what sort of content users are viewing.

“We will never understand the risks and benefits of social media use unless the likes of Twitter, Facebook and Instagram share their data with researchers,” said Dr Bernadka Dubicka, chair of the college’s child and adolescent mental health faculty. “Their research will help shine a light on how young people are interacting with social media, not just how much time they spend online.”

Data passed to academics would show the type of material viewed and how long users were spending on such platforms but would be anonymous, the college said.

The government plans to set up a new online safety regulator and the college says it should be given the power to compel firms to hand over data. It is also calling for the forthcoming 2% “turnover tax” on social media companies’ income to be extended so that it includes their turnover internationally, not from just the UK.

“Self-regulation is not working. It is time for government to step up and take decisive action to hold social media companies to account for escalating harmful content to vulnerable children and young people,” said Dubicka.

The college’s demands come amid growing concern that young people are being harmed by material that, for example, encourages self-harm, suicide and eating disorders. They are included in a new position statement on technology use and the mental health of children and young people.

NHS England challenged firms to hand over the sort of information that the college is suggesting. Claire Murdoch, its national director for mental health, said that action was needed “to rein in potentially misleading or harmful online content and behaviours”.

She said: “If these tech giants really want to be a force for good, put a premium on users’ wellbeing and take their responsibilities seriously, then they should do all they can to help researchers better understand how they operate and the risks posed. Until then, they cannot confidently say whether the good outweighs the bad.”

The demands have also been backed by Ian Russell, who has become a campaigner against social media harm since his 14-year-old daughter Molly killed herself in November 2017….(More)”.

The future is intelligent: Harnessing the potential of artificial intelligence in Africa


Youssef Travaly and Kevin Muvunyi at Brookings: “…AI in particular presents countless avenues for both the public and private sectors to optimize solutions to the most crucial problems facing the continent today, especially for struggling industries. For example, in health care, AI solutions can help scarce personnel and facilities do more with less by speeding initial processing, triage, diagnosis, and post-care follow up. Furthermore, AI-based pharmacogenomics applications, which focus on the likely response of an individual to therapeutic drugs based on certain genetic markers, can be used to tailor treatments. Considering the genetic diversity found on the African continent, it is highly likely that the application of these technologies in Africa will result in considerable advancement in medical treatment on a global level.

In agricultureAbdoulaye Baniré Diallo, co-founder and chief scientific officer of the AI startup My Intelligent Machines, is working with advanced algorithms and machine learning methods to leverage genomic precision in livestock production models. With genomic precision, it is possible to build intelligent breeding programs that minimize the ecological footprint, address changing consumer demands, and contribute to the well-being of people and animals alike through the selection of good genetic characteristics at an early stage of the livestock production process. These are just a few examples that illustrate the transformative potential of AI technology in Africa.

However, a number of structural challenges undermine rapid adoption and implementation of AI on the continent. Inadequate basic and digital infrastructure seriously erodes efforts to activate AI-powered solutions as it reduces crucial connectivity. (For more on strategies to improve Africa’s digital infrastructure, see the viewpoint on page 67 of the full report). A lack of flexible and dynamic regulatory systems also frustrates the growth of a digital ecosystem that favors AI technology, especially as tech leaders want to scale across borders. Furthermore, lack of relevant technical skills, particularly for young people, is a growing threat. This skills gap means that those who would have otherwise been at the forefront of building AI are left out, preventing the continent from harnessing the full potential of transformative technologies and industries.

Similarly, the lack of adequate investments in research and development is an important obstacle. Africa must develop innovative financial instruments and public-private partnerships to fund human capital development, including a focus on industrial research and innovation hubs that bridge the gap between higher education institutions and the private sector to ensure the transition of AI products from lab to market….(More)”.