Global AI Ethics Consortium


About: “…The newly founded Global AI Ethics Consortium (GAIEC) on Ethics and the Use of Data and Artificial Intelligence in the Fight Against COVID-19 and other Pandemics aims to:

  1. Support immediate needs for expertise related to the COVID-19 crisis and the emerging ethical questions related to the use of AI in managing the pandemic.
  2. Create a repository that includes avenues of communication for sharing and disseminating current research, new research opportunities, and past research findings.
  3. Coordinate internal funding and research initiatives to allow for maximum opportunities to pursue vital research related to health crises and the ethical use of AI.
  4. Discuss research findings and opportunities for new areas of collaboration.

Read the Statement of Purpose and find out more about the Global AI Ethics Consortium and its founding members: Christoph Lütge (TUM Institute for Ethics in Artificial Intelligence, Technical University of Munich), Jean-Gabriel Ganascia (LIP6-CNRS, Sorbonne Université), Mark Findlay (Centre for AI and Data Governance, Law School, Singapore Management University), Ken Ito and Kan Hiroshi Suzuki (The University of Tokyo), Jeannie Marie Paterson (Centre for AI and Digital Ethics, University of Melbourne), Huw Price (Leverhulme Centre for the Future of Intelligence, University of Cambridge), Stefaan G. Verhulst (The GovLab, New York University), Yi Zeng (Research Center for AI Ethics and Safety, Beijing Academy of Artificial Intelligence), and Adrian Weller (The Allan Turing Institute).

If you or your organization is interested in the GAIEC — Global AI Ethics Consortium please contact us at ieai@mcts.tum.de…(More)”.

The significance of algorithmic selection for everyday life: The Case of Switzerland


University of Zurich: “This project empirically investigates the significance of automated algorithmic selection (AS) applications on the Internet for everyday life in Switzerland. It is the first countrywide, representative empirical study in the emerging interdisciplinary field of critical algorithm studies which assesses growing social, economic and political implications of algorithms in various life domains. The project is based on an innovative mix of methods comprising qualitative interviews and a representative Swiss online survey, combined with a passive metering (tracking) of Internet use.

  • Latzer, Michael / Festic, Noemi / Kappeler, Kiran (2020): Use and Assigned Relevance of Algorithmic-Selection Applications in Switzerland. Report 1 from the Project: The Significance of Algorithmic Selection for Everyday Life: The Case of Switzerland. Zurich: University of Zurich. http://mediachange.ch/research/algosig [forthcoming]
  • Latzer, Michael / Festic, Noemi / Kappeler, Kiran (2020): Awareness of Algorithmic Selection and Attitudes in Switzerland. Report 2 from the Project: The Significance of Algorithmic Selection for Everyday Life: The Case of Switzerland. Zurich: University of Zurich. http://mediachange.ch/research/algosig [forthcoming]
  • Latzer, Michael / Festic, Noemi / Kappeler, Kiran (2020): Awareness of Risks Related to Algorithmic Selection in Switzerland. Report 3 from the Project: The Significance of Algorithmic Selection for Everyday Life: The Case of Switzerland. Zurich: University of Zurich. http://mediachange.ch/research/algosig [forthcoming]
  • Latzer, Michael / Festic, Noemi / Kappeler, Kiran (2020): Coping Practices Related to Algorithmic Selection in Switzerland. Report 4 from the Project: The Significance of Algorithmic Selection for Everyday Life: The Case of Switzerland. Zurich: University of Zurich. http://mediachange.ch/research/algosig [forthcoming]…(More)”.

A guide to healthy skepticism of artificial intelligence and coronavirus


Alex Engler at Brookings: “The COVID-19 outbreak has spurred considerable news coverage about the ways artificial intelligence (AI) can combat the pandemic’s spread. Unfortunately, much of it has failed to be appropriately skeptical about the claims of AI’s value. Like many tools, AI has a role to play, but its effect on the outbreak is probably small. While this may change in the future, technologies like data reporting, telemedicine, and conventional diagnostic tools are currently far more impactful than AI.

Still, various news articles have dramatized the role AI is playing in the pandemic by overstating what tasks it can perform, inflating its effectiveness and scale, neglecting the level of human involvement, and being careless in consideration of related risks. In fact, the COVID-19 AI-hype has been diverse enough to cover the greatest hits of exaggerated claims around AI. And so, framed around examples from the COVID-19 outbreak, here are eight considerations for a skeptic’s approach to AI claims….(More)”.

The explanation game: a formal framework for interpretable machine learning


Paper by David S. Watson & Luciano Floridi: “We propose a formal framework for interpretable machine learning. Combining elements from statistical learning, causal interventionism, and decision theory, we design an idealised explanation game in which players collaborate to find the best explanation(s) for a given algorithmic prediction. Through an iterative procedure of questions and answers, the players establish a three-dimensional Pareto frontier that describes the optimal trade-offs between explanatory accuracy, simplicity, and relevance. Multiple rounds are played at different levels of abstraction, allowing the players to explore overlapping causal patterns of variable granularity and scope. We characterise the conditions under which such a game is almost surely guaranteed to converge on a (conditionally) optimal explanation surface in polynomial time, and highlight obstacles that will tend to prevent the players from advancing beyond certain explanatory thresholds. The game serves a descriptive and a normative function, establishing a conceptual space in which to analyse and compare existing proposals, as well as design new and improved solutions….(More)”

Responding to COVID-19 with AI and machine learning


Paper by Mihaela van der Schaar et al: “…AI and machine learning can use data to make objective and informed recommendations, and can help ensure that scarce resources are allocated as efficiently as possible. Doing so will save lives and can help reduce the burden on healthcare systems and professionals….

1. Managing limited resources

AI and machine learning can help us identify people who are at highest risk of being infected by the novel coronavirus. This can be done by integrating electronic health record data with a multitude of “big data” pertaining to human-to-human interactions (from cellular operators, traffic, airlines, social media, etc.). This will make allocation of resources like testing kits more efficient, as well as informing how we, as a society, respond to this crisis over time….

2. Developing a personalized treatment course for each patient 

As mentioned above, COVID-19 symptoms and disease evolution vary widely from patient to patient in terms of severity and characteristics. A one-size-fits-all approach for treatment doesn’t work. We also are a long way off from mass-producing a vaccine. 

Machine learning techniques can help determine the most efficient course of treatment for each individual patient on the basis of observational data about previous patients, including their characteristics and treatments administered. We can use machine learning to answer key “what-if” questions about each patient, such as “What if we postpone a couple hours before putting them on a ventilator?” or “Would the outcome for this patient be better if we switched them from supportive care to an experimental treatment earlier?”

3. Informing policies and improving collaboration

…It’s hard to get a clear sense of which decisions result in the best outcomes. In such a stressful situation, it’s also hard for decision-makers to be aware of the outcomes of decisions being made by their counterparts elsewhere. 

Once again, data-driven AI and machine learning can provide objective and usable insights that far exceed the capabilities of existing methods. We can gain valuable insight into what the differences between policies are, why policies are different, which policies work better, and how to design and adopt improved policies….

4. Managing uncertainty

….We can use an area of machine learning called transfer learning to account for differences between populations, substantially eliminating bias while still extracting usable data that can be applied from one population to another. 

We can also use methods to make us aware of the degree of uncertainty of any given conclusion or recommendation generated from machine learning. This means that decision-makers can be provided with confidence estimates that tell them how confident they can be about a recommended course of action.

5. Expediting clinical trials

Randomized clinical trials (RCTs) are generally used to judge the relative effectiveness of a new treatment. However, these trials can be slow and costly, and may fail to uncover specific subgroups for which a treatment may be most effective. A specific problem posed by COVID-19 is that subjects selected for RCTs tend not to be elderly, or to have other conditions; as we know, COVID-19 has a particularly severe impact on both those patient groups….

The AI and machine learning techniques I’ve mentioned above do not require further peer review or further testing. Many have already been implemented on a smaller scale in real-world settings. They are essentially ready to go, with only slight adaptations required….(More) (Full Paper)”.

Beyond a Human Rights-based approach to AI Governance: Promise, Pitfalls, Plea


Paper by Nathalie A. Smuha: “This paper discusses the establishment of a governance framework to secure the development and deployment of “good AI”, and describes the quest for a morally objective compass to steer it. Asserting that human rights can provide such compass, this paper first examines what a human rights-based approach to AI governance entails, and sets out the promise it propagates. Subsequently, it examines the pitfalls associated with human rights, particularly focusing on the criticism that these rights may be too Western, too individualistic, too narrow in scope and too abstract to form the basis of sound AI governance. After rebutting these reproaches, a plea is made to move beyond the calls for a human rights-based approach, and start taking the necessary steps to attain its realisation. It is argued that, without elucidating the applicability and enforceability of human rights in the context of AI; adopting legal rules that concretise those rights where appropriate; enhancing existing enforcement mechanisms; and securing an underlying societal infrastructure that enables human rights in the first place, any human rights-based governance framework for AI risks falling short of its purpose….(More)”.

The human rights impacts of migration control technologies


Petra Molnar at EDRI: “At the start of this new decade, over 70 million people have been forced to move due to conflict, instability, environmental factors, and economic reasons. As a response to the increased migration into the European Union, many states are looking into various technological experiments to strengthen border enforcement and manage migration. These experiments range from Big Data predictions about population movements in the Mediterranean to automated decision-making in immigration applications and Artificial Intelligence (AI) lie detectors at European borders. However, often these technological experiments do not consider the profound human rights ramifications and real impacts on human lives

A human laboratory of high risk experiments

Technologies of migration management operate in a global context. They reinforce institutions, cultures, policies and laws, and exacerbate the gap between the public and the private sector, where the power to design and deploy innovation comes at the expense of oversight and accountability. Technologies have the power to shape democracy and influence elections, through which they can reinforce the politics of exclusion. The development of technology also reinforces power asymmetries between countries and influence our thinking around which countries can push for innovation, while other spaces like conflict zones and refugee camps become sites of experimentation. The development of technology is not inherently democratic and issues of informed consent and right of refusal are particularly important to think about in humanitarian and forced migration contexts. For example, under the justification of efficiency, refugees in Jordan have their irises scanned in order to receive their weekly rations. Some refugees in the Azraq camp have reported feeling like they did not have the option to refuse to have their irises scanned, because if they did not participate, they would not get food. This is not free and informed consent….(More)”.

Algorithms and Contract Law


Paper by Lauren Henry Scholz: “Generalist confusion about the technology behind complex algorithms has led to inconsistent case law for algorithmic contracts. Case law explicitly grounded in the principle that algorithms are constructive agents for the companies they serve would provide a clear basis for enforceability of algorithmic contracts that is both principled from a technological perspective and is readily intelligible and able to be applied by generalists….(More)”.

Facial Recognition Software requires Checks and Balances


David Eaves,  and Naeha Rashid in Policy Options: “A few weeks ago, members of the Nexus traveller identification program were notified that Canadian Border Services is upgrading its automated system, from iris scanners to facial recognition technology. This is meant to simplify identification and increase efficiency without compromising security. But it also raises profound questions concerning how we discuss and develop public policies around such technology – questions that may not be receiving sufficiently open debate in the rush toward promised greater security.

Analogous to the U.S. Customs and Border Protection (CBP) program Global Entry, Nexus is a joint Canada-US border control system designed for low-risk, pre-approved travellers. Nexus does provide a public good, and there are valid reasons to improve surveillance at airports. Even before 9/11, border surveillance was an accepted annoyance and since then, checkpoint operations have become more vigilant and complex in response to the public demand for safety.

Nexus is one of the first North America government-sponsored services to adopt facial recognition, and as such it could be a pilot program that other services will follow. Left unchecked, the technology will likely become ubiquitous at North American border crossings within the next decade, and it will probably be adopted by governments to solve domestic policy challenges.

Facial recognition software is imperfect and has documented bias, but it will continue to improve and become superior to humans in identifying individuals. Given this, questions arise such as, what policies guide the use of this technology? What policies should inform future government use? In our headlong rush toward enhanced security, we risk replicating the justification the used by the private sector in an attempt to balance effectiveness, efficiency and privacy.

One key question involves citizens’ capacity to consent. Previously, Nexus members submitted to fingerprint and retinal scans – biometric markers that are relatively unique and enable government to verify identity at the border. Facial recognition technology uses visual data and seeks, analyzes, and stores identifying facial information in a database, which is then used to compare with new images and video….(More)”.

Accelerating AI with synthetic data


Essay by Khaled El Emam: “The application of artificial intelligence and machine learning to solve today’s problems requires access to large amounts of data. One of the key obstacles faced by analysts is access to this data (for example, these issues were reflected in reports from the General Accountability Office and the McKinsey Institute).

Synthetic data can help solve this data problem in a privacy preserving manner.

What is synthetic data ?

Data synthesis is an emerging privacy-enhancing technology that can enable access to realistic data, which is information that may be synthetic, but has the properties of an original dataset. It also simultaneously ensures that such information can be used and disclosed with reduced obligations under contemporary privacy statutes. Synthetic data retains the statistical properties of the original data. Therefore, there are an increasing number of use cases where it would serve as a proxy for real data.

Synthetic data is created by taking an original (real) dataset and then building a model to characterize the distributions and relationships in that data — this is called the “synthesizer.” The synthesizer is typically an artificial neural network or other machine learning technique that learns these (original) data characteristics. Once that model is created, it can be used to generate synthetic data. The data is generated from the model and does not have a 1:1 mapping to real data, meaning that the likelihood of mapping the synthetic records to real individuals would be very small — it is not considered personal information.

Many different types of data can be synthesized, including images, video, audio, text and structured data. The main focus in this article is on the synthesis of structured data.

Even though data can be generated in this manner, that does not mean it cannot be personal information. If the synthesizer is overfit to real data, then the generated data will replicate the original real data. Therefore, the synthesizer has to be constructed in a manner to avoid such overfitting. A formal privacy assurance should also be performed on the synthesized data to validate that there is a weak mapping between synthetic records to individuals….(More)”.