Report on Algorithmic Risk Assessment Tools in the U.S. Criminal Justice System


Press release: “The Partnership on AI (PAI) has today published a report gathering the views of the multidisciplinary artificial intelligence and machine learning research and ethics community which documents the serious shortcomings of algorithmic risk assessment tools in the U.S. criminal justice system. These kinds of AI tools for deciding on whether to detain or release defendants are in widespread use around the United States, and some legislatures have begun to mandate their use. Lessons drawn from the U.S. context have widespread applicability in other jurisdictions, too, as the international policymaking community considers the deployment of similar tools.

While criminal justice risk assessment tools are often simpler than the deep neural networks used in many modern artificial intelligence systems, they are basic forms of AI. As such, they present a paradigmatic example of the high-stakes social and ethical consequences of automated AI decision-making….

Across the report, challenges to using these tools fell broadly into three primary categories:

  1. Concerns about the accuracy, bias, and validity in the tools themselves
    • Although the use of these tools is in part motivated by the desire to mitigate existing human fallibility in the criminal justice system, this report suggests that it is a serious misunderstanding to view tools as objective or neutral simply because they are based on data.
  2. Issues with the interface between the tools and the humans who interact with them
    • In addition to technical concerns, these tools must be held to high standards of interpretability and explainability to ensure that users (including judges, lawyers, and clerks, among others) can understand how the tools’ predictions are reached and make reasonable decisions based on these predictions.
  3. Questions of governance, transparency, and accountability
    • To the extent that such systems are adapted to make life-changing decisions, tools and decision-makers who specify, mandate, and deploy them must meet high standards of transparency and accountability.

This report highlights some of the key challenges with the use of risk assessment tools for criminal justice applications. It also raises some deep philosophical and procedural issues which may not be easy to resolve. Surfacing and addressing those concerns will require ongoing research and collaboration between policymakers, the AI research community, civil society groups, and affected communities, as well as new types of data collection and transparency. It is PAI’s mission to spur and facilitate these conversations and to produce research to bridge such gaps….(More)”

AI & Global Governance: Robots Will Not Only Wage Future Wars but also Future Peace


Daanish Masood & Martin Waehlisch at the United Nations University: “At the United Nations, we have been exploring completely different scenarios for AI: its potential to be used for the noble purposes of peace and security. This could revolutionize the way of how we prevent and solve conflicts globally.

Two of the most promising areas are Machine Learning and Natural Language Processing. Machine Learning involves computer algorithms detecting patterns from data to learn how to make predictions and recommendations. Natural Language Processing involves computers learning to understand human languages.

At the UN Secretariat, our chief concern is with how these emerging technologies can be deployed for the good of humanity to de-escalate violence and increase international stability.

This endeavor has admirable precedent. During the Cold War, computer scientists used multilayered simulations to predict the scale and potential outcome of the arms race between the East and the West.

Since then, governments and international agencies have increasingly used computational models and advanced Machine Learning to try to understand recurrent conflict patterns and forecast moments of state fragility.

But two things have transformed the scope for progress in this field.

The first is the sheer volume of data now available from what people say and do online. The second is the game-changing growth in computational capacity that allows us to crunch unprecedented, inconceivable quantities data with relative speed and ease.

So how can this help the United Nations build peace? Three ways come to mind.

Firstly, overcoming cultural and language barriers. By teaching computers to understand human language and the nuances of dialects, not only can we better link up what people write on social media to local contexts of conflict, we can also more methodically follow what people say on radio and TV. As part of the UN’s early warning efforts, this can help us detect hate speech in a place where the potential for conflict is high. This is crucial because the UN often works in countries where internet coverage is low, and where the spoken languages may not be well understood by many of its international staff.

Natural Language Processing algorithms can help to track and improve understanding of local debates, which might well be blind spots for the international community. If we combine such methods with Machine Learning chatbots, the UN could conduct large-scale digital focus groups with thousands in real-time, enabling different demographic segments in a country to voice their views on, say, a proposed peace deal – instantly testing public support, and indicating the chances of sustainability.

Secondly, anticipating the deeper drivers of conflict. We could combine new imaging techniques – whether satellites or drones – with automation. For instance, many parts of the world are experiencing severe groundwater withdrawal and water aquifer depletion. Water scarcity, in turn, drives conflicts and undermines stability in post-conflict environments, where violence around water access becomes more likely, along with large movements of people leaving newly arid areas.

One of the best predictors of water depletion is land subsidence or sinking, which can be measured by satellite and drone imagery. By combining these imaging techniques with Machine Learning, the UN can work in partnership with governments and local communities to anticipate future water conflicts and begin working proactively to reduce their likelihood.

Thirdly, advancing decision making. In the work of peace and security, it is surprising how many consequential decisions are still made solely on the basis of intuition.

Yet complex decisions often need to navigate conflicting goals and undiscovered options, against a landscape of limited information and political preference. This is where we can use Deep Learning – where a network can absorb huge amounts of public data and test it against real-world examples on which it is trained while applying with probabilistic modeling. This mathematical approach can help us to generate models of our uncertain, dynamic world with limited data.

With better data, we can eventually make better predictions to guide complex decisions. Future senior peace envoys charged with mediating a conflict would benefit from such advances to stress test elements of a peace agreement. Of course, human decision-making will remain crucial, but would be informed by more evidence-driven robust analytical tools….(More)”.

LAPD moving away data-driven crime programs over potential racial bias


Mark Puente in The Los Angeles Times: “The Los Angeles Police Department pioneered the controversial use of data to pinpoint crime hot spots and track violent offenders.

Complex algorithms and vast databases were supposed to revolutionize crime fighting, making policing more efficient as number-crunching computers helped to position scarce resources.

But critics long complained about inherent bias in the data — gathered by officers — that underpinned the tools.

They claimed a partial victory when LAPD Chief Michel Moore announced he would end one highly touted program intended to identify and monitor violent criminals. On Tuesday, the department’s civilian oversight panel raised questions about whether another program, aimed at reducing property crime, also disproportionately targets black and Latino communities.

Members of the Police Commission demanded more information about how the agency plans to overhaul a data program that helps predict where and when crimes will likely occur. One questioned why the program couldn’t be suspended.

“There is very limited information” on the program’s impact, Commissioner Shane Murphy Goldsmith said.

The action came as so-called predictive policing— using search tools, point scores and other methods — is under increasing scrutiny by privacy and civil liberties groups that say the tactics result in heavier policing of black and Latino communities. The argument was underscored at Tuesday’s commission meeting when several UCLA academics cast doubt on the research behind crime modeling and predictive policing….(More)”.

How Recommendation Algorithms Run the World


Article by Zeynep Tufekci: “What should you watch? What should you read? What’s news? What’s trending? Wherever you go online, companies have come up with very particular, imperfect ways of answering these questions. Everywhere you look, recommendation engines offer striking examples of how values and judgments become embedded in algorithms and how algorithms can be gamed by strategic actors.

Consider a common, seemingly straightforward method of making suggestions: a recommendation based on what people “like you” have read, watched, or shopped for. What exactly is a person like me? Which dimension of me? Is it someone of the same age, gender, race, or location? Do they share my interests? My eye color? My height? Or is their resemblance to me determined by a whole mess of “big data” (aka surveillance) crunched by a machine-learning algorithm?

Deep down, behind every “people like you” recommendation is a computational method for distilling stereotypes through data. Even when these methods work, they can help entrench the stereotypes they’re mobilizing. They might easily recommend books about coding to boys and books about fashion to girls, simply by tracking the next most likely click. Of course, that creates a feedback cycle: If you keep being shown coding books, you’re probably more likely to eventually check one out.

Another common method for generating recommendations is to extrapolate from patterns in how people consume things. People who watched this then watched that; shoppers who purchased this item also added that one to their shopping cart. Amazon uses this method a lot, and I admit, it’s often quite useful. Buy an electric toothbrush? How nice that the correct replacement head appears in your recommendations. Congratulations on your new vacuum cleaner: Here are some bags that fit your machine.

But these recommendations can also be revealing in ways that are creepy. …

One final method for generating recommendations is to identify what’s “trending” and push that to a broader user base. But this, too, involves making a lot of judgments….(More)”.

The Importance of Data Access Regimes for Artificial Intelligence and Machine Learning


JRC Digital Economy Working Paper by Bertin Martens: “Digitization triggered a steep drop in the cost of information. The resulting data glut created a bottleneck because human cognitive capacity is unable to cope with large amounts of information. Artificial intelligence and machine learning (AI/ML) triggered a similar drop in the cost of machine-based decision-making and helps in overcoming this bottleneck. Substantial change in the relative price of resources puts pressure on ownership and access rights to these resources. This explains pressure on access rights to data. ML thrives on access to big and varied datasets. We discuss the implications of access regimes for the development of AI in its current form of ML. The economic characteristics of data (non-rivalry, economies of scale and scope) favour data aggregation in big datasets. Non-rivalry implies the need for exclusive rights in order to incentivise data production when it is costly. The balance between access and exclusion is at the centre of the debate on data regimes. We explore the economic implications of several modalities for access to data, ranging from exclusive monopolistic control to monopolistic competition and free access. Regulatory intervention may push the market beyond voluntary exchanges, either towards more openness or reduced access. This may generate private costs for firms and individuals. Society can choose to do so if the social benefits of this intervention outweigh the private costs.

We briefly discuss the main EU legal instruments that are relevant for data access and ownership, including the General Data Protection Regulation (GDPR) that defines the rights of data subjects with respect to their personal data and the Database Directive (DBD) that grants ownership rights to database producers. These two instruments leave a wide legal no-man’s land where data access is ruled by bilateral contracts and Technical Protection Measures that give exclusive control to de facto data holders, and by market forces that drive access, trade and pricing of data. The absence of exclusive rights might facilitate data sharing and access or it may result in a segmented data landscape where data aggregation for ML purposes is hard to achieve. It is unclear if incompletely specified ownership and access rights maximize the welfare of society and facilitate the development of AI/ML…(More)”

Data Collaboratives as an enabling infrastructure for AI for Good


Blog Post by Stefaan G. Verhulst: “…The value of data collaboratives stems from the fact that the supply of and demand for data are generally widely dispersed — spread across government, the private sector, and civil society — and often poorly matched. This failure (a form of “market failure”) results in tremendous inefficiencies and lost potential. Much data that is released is never used. And much data that is actually needed is never made accessible to those who could productively put it to use.

Data collaboratives, when designed responsibly, are the key to addressing this shortcoming. They draw together otherwise siloed data and a dispersed range of expertise, helping match supply and demand, and ensuring that the correct institutions and individuals are using and analyzing data in ways that maximize the possibility of new, innovative social solutions.

Roadmap for Data Collaboratives

Despite their clear potential, the evidence base for data collaboratives is thin. There’s an absence of a systemic, structured framework that can be replicated across projects and geographies, and there’s a lack of clear understanding about what works, what doesn’t, and how best to maximize the potential of data collaboratives.

At the GovLab, we’ve been working to address these shortcomings. For emerging economies considering the use of data collaboratives, whether in pursuit of Artificial Intelligence or other solutions, we present six steps that can be considered in order to create data collaborative that are more systematic, sustainable, and responsible.

The need for making Data Collaboratives Systematic, Sustainable and Responsible
  • Increase Evidence and Awareness
  • Increase Readiness and Capacity
  • Address Data Supply and Demand Inefficiencies and Uncertainties
  • Establish a New “Data Stewards” Function
  • Develop and strengthen policies and governance practices for data collaboration

Safeguards for human studies can’t cope with big data


Nathaniel Raymond at Nature: “One of the primary documents aiming to protect human research participants was published in the US Federal Register 40 years ago this week. The Belmont Report was commissioned by Congress in the wake of the notorious Tuskegee syphilis study, in which researchers withheld treatment from African American men for years and observed how the disease caused blindness, heart disease, dementia and, in some cases, death.

The Belmont Report lays out core principles now generally required for human research to be considered ethical. Although technically governing only US federally supported research, its influence reverberates across academia and industry globally. Before academics with US government funding can begin research involving humans, their institutional review boards (IRBs) must determine that the studies comply with regulation largely derived from a document that was written more than a decade before the World Wide Web and nearly a quarter of a century before Facebook.

It is past time for a Belmont 2.0. We should not be asking those tasked with protecting human participants to single-handedly identify and contend with the implications of the digital revolution. Technological progress, including machine learning, data analytics and artificial intelligence, has altered the potential risks of research in ways that the authors of the first Belmont report could not have predicted. For example, Muslim cab drivers can be identified from patterns indicating that they stop to pray; the Ugandan government can try to identify gay men from their social-media habits; and researchers can monitor and influence individuals’ behaviour online without enrolling them in a study.

Consider the 2014 Facebook ‘emotional contagion study’, which manipulated users’ exposure to emotional content to evaluate effects on mood. That project, a collaboration with academic researchers, led the US Department of Health and Human Services to launch a long rule-making process that tweaked some regulations governing IRBs.

A broader fix is needed. Right now, data science overlooks risks to human participants by default….(More)”.

Credit denial in the age of AI


Paper by Aaron Klein: “Banks have been in the business of deciding who is eligible for credit for centuries. But in the age of artificial intelligence (AI), machine learning (ML), and big data, digital technologies have the potential to transform credit allocation in positive as well as negative directions. Given the mix of possible societal ramifications, policymakers must consider what practices are and are not permissible and what legal and regulatory structures are necessary to protect consumers against unfair or discriminatory lending practices.

In this paper, I review the history of credit and the risks of discriminatory practices. I discuss how AI alters the dynamics of credit denials and what policymakers and banking officials can do to safeguard consumer lending. AI has the potential to alter credit practices in transformative ways and it is important to ensure that this happens in a safe and prudent manner….(More)”.

Access to Algorithms


Paper by Hannah Bloch-Wehba: “Federal, state, and local governments increasingly depend on automated systems — often procured from the private sector — to make key decisions about civil rights and civil liberties. When individuals affected by these decisions seek access to information about the algorithmic methodologies that produced them, governments frequently assert that this information is proprietary and cannot be disclosed. 

Recognizing that opaque algorithmic governance poses a threat to civil rights and liberties, scholars have called for a renewed focus on transparency and accountability for automated decision making. But scholars have neglected a critical avenue for promoting public accountability and transparency for automated decision making: the law of access to government records and proceedings. This Article fills this gap in the literature, recognizing that the Freedom of Information Act, its state equivalents, and the First Amendment provide unappreciated legal support for algorithmic transparency.

The law of access performs three critical functions in promoting algorithmic accountability and transparency. First, by enabling any individual to challenge algorithmic opacity in government records and proceedings, the law of access can relieve some of the burden otherwise borne by parties who are often poor and under-resourced. Second, access law calls into question government’s procurement of algorithmic decision making technologies from private vendors, subject to contracts that include sweeping protections for trade secrets and intellectual property rights. Finally, the law of access can promote an urgently needed public debate on algorithmic governance in the public sector….(More)”.

Building Trust in Human Centric Artificial Intelligence


Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: “Artificial intelligence (AI) has the potential to transform our world for the better: it can improve healthcare, reduce energy consumption, make cars safer, and enable farmers to use water and natural resources more efficiently. AI can be used to predict environmental and climate change, improve financial risk management and provides the tools to manufacture, with less waste, products tailored to our needs. AI can also help to detect fraud and cybersecurity threats, and enables law enforcement agencies to fight crime more efficiently.

AI can benefit the whole of society and the economy. It is a strategic technology that is now being developed and used at a rapid pace across the world. Nevertheless, AI also brings with it new challenges for the future of work, and raises legal and ethical questions.

To address these challenges and make the most of the opportunities which AI offers, the Commission published a European strategy in April 2018. The strategy places people at the centre of the development of AI — human-centric AI. It is a three-pronged approach to boost the EU’s technological and industrial capacity and AI uptake across the economy, prepare for socio-economic changes, and ensure an appropriate ethical and legal framework.

To deliver on the AI strategy, the Commission developed together with Member States a coordinated plan on AI, which it presented in December 2018, to create synergies, pool data — the raw material for many AI applications — and increase joint investments. The aim is to foster cross-border cooperation and mobilise all players to increase public and private investments to at least EUR 20 billion annually over the next decade.

The Commission doubled its investments in AI in Horizon 2020 and plans to invest EUR 1 billion annually from Horizon Europe and the Digital Europe Programme, in support notably of common data spaces in health, transport and manufacturing, and large experimentation facilities such as smart hospitals and infrastructures for automated vehicles and a strategic research agenda.

To implement such a common strategic research, innovation and deployment agenda the Commission has intensified its dialogue with all relevant stakeholders from industry, research institutes and public authorities. The new Digital Europe programme will also be crucial in helping to make AI available to small and medium-size enterprises across all Member States through digital innovation hubs, strengthened testing and experimentation facilities, data spaces and training programmes.

Building on its reputation for safe and high-quality products, Europe’s ethical approach to AI strengthens citizens’ trust in the digital development and aims at building a competitive advantage for European AI companies. The purpose of this Communication is to launch a comprehensive piloting phase involving stakeholders on the widest scale in order to test the practical implementation of ethical guidance for AI development and use…(More)”.