Big Data and medicine: a big deal?


V. Mayer-Schönberger and E. Ingelsson in the Journal of Internal Medicine: “Big Data promises huge benefits for medical research. Looking beyond superficial increases in the amount of data collected, we identify three key areas where Big Data differs from conventional analyses of data samples: (i) data are captured more comprehensively relative to the phenomenon under study; this reduces some bias but surfaces important trade-offs, such as between data quantity and data quality; (ii) data are often analysed using machine learning tools, such as neural networks rather than conventional statistical methods resulting in systems that over time capture insights implicit in data, but remain black boxes, rarely revealing causal connections; and (iii) the purpose of the analyses of data is no longer simply answering existing questions, but hinting at novel ones and generating promising new hypotheses. As a consequence, when performed right, Big Data analyses can accelerate research.

Because Big Data approaches differ so fundamentally from small data ones, research structures, processes and mindsets need to adjust. The latent value of data is being reaped through repeated reuse of data, which runs counter to existing practices not only regarding data privacy, but data management more generally. Consequently, we suggest a number of adjustments such as boards reviewing responsible data use, and incentives to facilitate comprehensive data sharing. As data’s role changes to a resource of insight, we also need to acknowledge the importance of collecting and making data available as a crucial part of our research endeavours, and reassess our formal processes from career advancement to treatment approval….(More)”.

Artificial intelligence and smart cities


Essay by Michael Batty at Urban Analytics and City Sciences: “…The notion of the smart city of course conjures up these images of such an automated future. Much of our thinking about this future, certainly in the more popular press, is about everything ranging from the latest App on our smart phones to driverless cars while somewhat deeper concerns are about efficiency gains due to the automation of services ranging from transit to the delivery of energy. There is no doubt that routine and repetitive processes – algorithms if you like – are improving at an exponential rate in terms of the data they can process and the speed of execution, faithfully following Moore’s Law.

Pattern recognition techniques that lie at the basis of machine learning are highly routinized iterative schemes where the pattern in question – be it a signature, a face, the environment around a driverless car and so on – is computed as an elaborate averaging procedure which takes a series of elements of the pattern and weights them in such a way that the pattern can be reproduced perfectly by the combinations of elements of the original pattern and the weights. This is in essence the way neural networks work. When one says that they ‘learn’ and that the current focus is on ‘deep learning’, all that is meant is that with complex patterns and environments, many layers of neurons (elements of the pattern) are defined and the iterative procedures are run until there is a convergence with the pattern that is to be explained. Such processes are iterative, additive and not much more than sophisticated averaging but using machines that can operate virtually at the speed of light and thus process vast volumes of big data. When these kinds of algorithm can be run in real time and many already can be, then there is the prospect of many kinds of routine behaviour being displaced. It is in this sense that AI might herald in an era of truly disruptive processes. This according to Brynjolfsson and McAfee is beginning to happen as we reach the second half of the chess board.

The real issue in terms of AI involves problems that are peculiarly human. Much of our work is highly routinized and many of our daily actions and decisions are based on relatively straightforward patterns of stimulus and response. The big questions involve the extent to which those of our behaviours which are not straightforward can be automated. In fact, although machines are able to beat human players in many board games and there is now the prospect of machines beating the very machines that were originally designed to play against humans, the real power of AI may well come from collaboratives of man and machine, working together, rather than ever more powerful machines working by themselves. In the last 10 years, some of my editorials have tracked what is happening in the real-time city – the smart city as it is popularly called – which has become key to many new initiatives in cities. In fact, cities – particularly big cities, world cities – have become the flavour of the month but the focus has not been on their long-term evolution but on how we use them on a minute by minute to week by week basis.

Many of the patterns that define the smart city on these short-term cycles can be predicted using AI largely because they are highly routinized but even for highly routine patterns, there are limits on the extent to which we can explain them and reproduce them. Much advancement in AI within the smart city will come from automation of the routine, such as the use of energy, the delivery of location-based services, transit using information being fed to operators and travellers in real time and so on. I think we will see some quite impressive advances in these areas in the next decade and beyond. But the key issue in urban planning is not just this short term but the long term and it is here that the prospects for AI are more problematic….(More)”.

Can Big Data Revolutionize International Human Rights Law?


Galit A. Sarfaty in the Journal of International Law: “International human rights efforts have been overly reliant on reactive tools and focused on treaty compliance, while often underemphasizing the prevention of human rights violations. I argue that data analytics can play an important role in refocusing the international human rights regime on its original goal of preventing human rights abuses, but it comes at a cost.

There are risks in advancing a data-driven approach to human rights, including the privileging of certain rights subject to quantitative measurement and the precipitation of further human rights abuses in the process of preventing other violations. Moreover, the increasing use of big data can ultimately privatize the international human rights regime by transforming the corporation into a primary gatekeeper of rights protection. Such unintended consequences need to be addressed in order to maximize the benefits and minimize the risks of using big data in this field….(More)”.

Using new data sources for policymaking


Technical report by the Joint Research Centre (JRC) of the European Commission: “… synthesises the results of our work on using new data sources for policy-making. It reflects a recent shift from more general considerations in the area of Big Data to a more dedicated investigation of Citizen Science, and it summarizes the state of play. With this contribution, we start promoting Citizen Science as an integral component of public participation in policy in Europe.

The particular need to focus on the citizen dimension emerged due to (i) the increasing interest in the topic from policy Directorate-Generals (DGs) of the European Commission (EC); (ii) the considerable socio-economic impact policy making has on citizens’ life and society as a whole; and (iii) the clear potentiality of citizens’ contributions to increase the relevance of policy making and the effectiveness of policies when addressing societal challenges.

We explicitly concentrate on Citizen Science (or public participation in scientific research) as a way to engage people in practical work, and to develop a mutual understanding between the participants from civil society, research institutions and the public sector by working together on a topic that is of common interest.

Acknowledging this new priority, this report concentrates on the topic of Citizen Science and presents already ongoing collaborations and recent achievements. The presented work particularly addresses environment-related policies, Open Science and aspects of Better Regulation. We then introduce the six phases of the ‘cyclic value chain of Citizen Science’ as a concept to frame citizen engagement in science for policy. We use this structure in order to detail the benefits and challenges of existing approaches – building on the lessons that we learned so far from our own practical work and thanks to the knowledge exchange from third parties. After outlining additional related policy areas, we sketch the future work that is required in order to overcome the identified challenges, and translate them into actions for ourselves and our partners.

Next steps include the following:

 Develop a robust methodology for data collection, analysis and use of Citizen Science for EU policy;

 Provide a platform as an enabling framework for applying this methodology to different policy areas, including the provision of best practices;

 Offer guidelines for policy DGs in order to promote the use of Citizen Science for policy in Europe;

 Experiment and evaluate possibilities of overarching methodologies for citizen engagement in science and policy, and their case specifics; and

 Continue to advance interoperability and knowledge sharing between currently disconnected communities of practise. …(More)”.

Cops, Docs, and Code: A Dialogue between Big Data in Health Care and Predictive Policing


Paper by I. Glenn Cohen and Harry Graver: “Big data” has become the ubiquitous watchword of this decade. Predictive analytics, which is something we want to do with big data — to use of electronic algorithms to forecast future events in real time. Predictive analytics is interfacing with the law in a myriad of settings: how votes are counted and voter rolls revised, the targeting of taxpayers for auditing, the selection of travelers for more intensive searching, pharmacovigilance, the creation of new drugs and diagnostics, etc.

In this paper, written for the symposium “Future Proofing the Law,” we want to engage in a bit of legal arbitrage; that is, we want to examine which insights from legal analysis of predictive analytics in better-trodden ground — predictive policing — can be useful for understanding relatively newer ground for legal scholars — the use of predictive analytics in health care. To the degree lessons can be learned from this dialogue, we think they go in both directions….(More)”.

Selected Readings on Data, Gender, and Mobility


By Michelle Winowatan, Andrew Young, and Stefaan Verhulst

The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of data, gender, and mobility was originally published in 2017.

This edition of the Selected Readings was  developed as part of an ongoing project at the GovLab, supported by Data2X, in collaboration with UNICEF, DigitalGlobe, IDS (UDD/Telefonica R&D), and the ISI Foundation, to establish a data collaborative to analyze unequal access to urban transportation for women and girls in Chile. We thank all our partners for their suggestions to the below curation – in particular Leo Ferres at IDS who got us started with this collection; Ciro Cattuto and Michele Tizzoni from the ISI Foundation; and Bapu Vaitla at Data2X for their pointers to the growing data and mobility literature. 

Introduction

Daily mobility is key for gender equity. Access to transportation contributes to women’s agency and independence. The ability to move from place to place safely and efficiently can allow women to access education, work, and the public domain more generally. Yet, mobility is not just a means to access various opportunities. It is also a means to enter the public domain.

Women’s mobility is a multi-layered challenge
Women’s daily mobility, however, is often hampered by social, cultural, infrastructural, and technical barriers. Cultural bias, for instance, limits women mobility in a way that women are confined to an area with close proximity to their house due to society’s double standard on women to be homemakers. From an infrastructural perspective, public transportation mostly only accommodates home-to-work trips, when in reality women often make more complex trips with stops, for example, at the market, school, healthcare provider – sometimes called “trip chaining.” From a safety perspective, women tend to avoid making trips in certain areas and/or at certain time, due to a constant risk of being sexually harassed on public places. Women are also pushed toward more expensive transportation – such as taking a cab instead of a bus or train – based on safety concerns.

The growing importance of (new sources of) data
Researchers are increasingly experimenting with ways to address these interdependent problems through the analysis of diverse datasets, often collected by private sector businesses and other non-governmental entities. Gender-disaggregated mobile phone records, geospatial data, satellite imagery, and social media data, to name a few, are providing evidence-based insight into gender and mobility concerns. Such data collaboratives – the exchange of data across sectors to create public value – can help governments, international organizations, and other public sector entities in the move toward more inclusive urban and transportation planning, and the promotion of gender equity.
The below curated set of readings seek to focus on the following areas:

  1. Insights on how data can inform gender empowerment initiatives,
  2. Emergent research into the capacity of new data sources – like call detail records (CDRs) and satellite imagery – to increase our understanding of human mobility patterns, and
  3. Publications exploring data-driven policy for gender equity in mobility.

Readings are listed in alphabetical order.

We selected the readings based upon their focus (gender and/or mobility related); scope and representativeness (going beyond one project or context); type of data used (such as CDRs and satellite imagery); and date of publication.

Annotated Reading List

Data and Gender

Blumenstock, Joshua, and Nathan Eagle. Mobile Divides: Gender, Socioeconomic Status, and Mobile Phone Use in Rwanda. ACM Press, 2010.

  • Using traditional survey and mobile phone operator data, this study analyzes gender and socioeconomic divides in mobile phone use in Rwanda, where it is found that the use of mobile phones is significantly more prevalent in men and the higher class.
  • The study also shows the differences in the way men and women use phones, for example: women are more likely to use a shared phone than men.
  • The authors frame their findings around gender and economic inequality in the country to the end of providing pointers for government action.

Bosco, Claudio, et al. Mapping Indicators of Female Welfare at High Spatial Resolution. WorldPop and Flowminder, 2015.

  • This report focuses on early adolescence in girls, which often comes with higher risk of violence, fewer economic opportunity, and restrictions on mobility. Significant data gaps, methodological and ethical issues surrounding data collection for girls also create barriers for policymakers to create evidence-based policy to address those issues.
  • The authors analyze geolocated household survey data, using statistical models and validation techniques, and creates high-resolution maps of various sex-disaggregated indicators, such as nutrition level, access to contraception, and literacy, to better inform local policy making processes.
  • Further, it identifies the gender data gap and issues surrounding gender data collection, and provides arguments for why having a comprehensive data can help create better policy and contribute to the achievements of the Sustainable Development Goals (SDGs).

Buvinic, Mayra, Rebecca Furst-Nichols, and Gayatri Koolwal. Mapping Gender Data Gaps. Data2X, 2014.

  • This study identifies gaps in gender data in developing countries on health, education, economic opportunities, political participation, and human security issues.
  • It recommends ways to close the gender data gap through censuses and micro-level surveys, service and administrative records, and emphasizes how “big data” in particular can fill the missing data that will be able to measure the progress of women and girls well being. The authors argue that dentifying these gaps is key to advancing gender equality and women’s empowerment, one of the SDGs.

Catalyzing Inclusive FInancial System: Chile’s Commitment to Women’s Data. Data2X, 2014.

  • This article analyzes global and national data in the banking sector to fill the gap of sex-disaggregated data in Chile. The purpose of the study is to describe the difference in spending behavior and priorities between women and men, identify the challenges for women in accessing financial services, and create policies that promote women inclusion in Chile.

Ready to Measure: Twenty Indicators for Monitoring SDG Gender Targets. Open Data Watch and Data2X, 2016.

  • Using readily available data this study identifies 20 SDG indicators related to gender issues that can serve as a baseline measurement for advancing gender equality, such as percentage of women aged 20-24 who were married or in a union before age 18 (child marriage), proportion of seats held by women in national parliament, and share of women among mobile telephone owners, among others.

Ready to Measure Phase II: Indicators Available to Monitor SDG Gender Targets. Open Data Watch and Data2X, 2017.

  • The Phase II paper is an extension of the Ready to Measure Phase I above. Where Phase I identifies the readily available data to measure women and girls well-being, Phase II provides informations on how to access and summarizes insights from this data.
  • Phase II elaborates the insights about data gathered from ready to measure indicators and finds that although underlying data to measure indicators of women and girls’ wellbeing is readily available in most cases, it is typically not sex-disaggregated.
  • Over one in five – 53 out of 232 – SDG indicators specifically refer to women and girls. However, further analysis from this study reveals that at least 34 more indicators should be disaggregated by sex. For instance, there should be 15 more sex-disaggregated indicators for SDG number 3: “Ensure healthy lives and promote well-being for all at all ages.”
  • The report recommends national statistical agencies to take the lead and assert additional effort to fill the data gap by utilizing tools such as the statistical model to fill the current gender data gap for each of the SDGs.

Reed, Philip J., Muhammad Raza Khan, and Joshua Blumenstock. Observing gender dynamics and disparities with mobile phone metadata. International Conference on Information and Communication Technologies and Development (ICTD), 2016.

  • The study analyzes mobile phone logs of millions of Pakistani residents to explore whether there is a difference in mobile phone usage behavior between male and female and determine the extent to which gender inequality is reflected in mobile phone usage.
  • It utilizes mobile phone data to analyze the pattern of usage behavior between genders, and socioeconomic and demographic data obtained from census and advocacy groups to assess the state of gender equality in each region in Pakistan.
  • One of its findings is a strong positive correlation between proportion of female mobile phone users and education score.

Stehlé, Juliette, et al. Gender homophily from spatial behavior in a primary school: A sociometric study. 2013.

    • This paper seeks to understand homophily, a human behavior characterizes by interaction with peers who have similarities in “physical attributes to tastes or political opinions”. Further, it seeks to identify the magnitude of influence, a type of homophily has to social structures.
    • Focusing on gender interaction among primary school aged children in France, this paper collects data from wearable devices from 200 children in the period of 2 days and measure the physical proximity and duration of the interaction among those children in the playground.
  • It finds that interaction patterns are significantly determined by grade and class structure of the school. Meaning that children belonging to the same class have most interactions, and that lower grades usually do not interact with higher grades.
  • From a gender lens, this study finds that mixed-gender interaction lasts shorter relative to same-gender interaction. In addition, interaction among girls is also longer compared to interaction among boys. These indicate that the children in this school tend to have stronger relationships within their own gender, or what the study calls gender homophily. It further finds that gender homophily is apparent in all classes.

Data and Mobility

Bengtsson, Linus, et al. Using Mobile Phone Data to Predict the Spatial Spread of Cholera. Flowminder, 2015.

  • This study seeks to predict the 2010 cholera epidemic in Haiti using 2.9 million anonymous mobile phone SIM cards and reported cases of Cholera from the Haitian Directorate of Health, where 78 study areas were analyzed in the period of October 16 – December 16, 2010.
  • From this dataset, the study creates a mobility matrix that indicates mobile phone movement from one study area to another and combines that with the number of reported case of cholera in the study areas to calculate the infectious pressure level of those areas.
  • The main finding of its analysis shows that the outbreak risk of a study area correlates positively with the infectious pressure level, where an infectious pressure of over 22 results in an outbreak within 7 days. Further, it finds that the infectious pressure level can inform the sensitivity and specificity of the outbreak prediction.
  • It hopes to improve infectious disease containment by identifying areas with highest risks of outbreaks.

Calabrese, Francesco, et al. Understanding Individual Mobility Patterns from Urban Sensing Data: A Mobile Phone Trace Example. SENSEable City Lab, MIT, 2012.

  • This study compares mobile phone data and odometer readings from annual safety inspections to characterize individual mobility and vehicular mobility in the Boston Metropolitan Area, measured by the average daily total trip length of mobile phone users and average daily Vehicular Kilometers Traveled (VKT).
  • The study found that, “accessibility to work and non-work destinations are the two most important factors in explaining the regional variations in individual and vehicular mobility, while the impacts of populations density and land use mix on both mobility measures are insignificant.” Further, “a well-connected street network is negatively associated with daily vehicular total trip length.”
  • This study demonstrates the potential for mobile phone data to provide useful and updatable information on individual mobility patterns to inform transportation and mobility research.

Campos-Cordobés, Sergio, et al. “Chapter 5 – Big Data in Road Transport and Mobility Research.” Intelligent Vehicles. Edited by Felipe Jiménez. Butterworth-Heinemann, 2018.

  • This study outlines a number of techniques and data sources – such as geolocation information, mobile phone data, and social network observation – that could be leveraged to predict human mobility.
  • The authors also provide a number of examples of real-world applications of big data to address transportation and mobility problems, such as transport demand modeling, short-term traffic prediction, and route planning.

Lin, Miao, and Wen-Jing Hsu. Mining GPS Data for Mobility Patterns: A Survey. Pervasive and Mobile Computing vol. 12,, 2014.

  • This study surveys the current field of research using high resolution positioning data (GPS) to capture mobility patterns.
  • The survey focuses on analyses related to frequently visited locations, modes of transportation, trajectory patterns, and placed-based activities. The authors find “high regularity” in human mobility patterns despite high levels of variation among the mobility areas covered by individuals.

Phithakkitnukoon, Santi, Zbigniew Smoreda, and Patrick Olivier. Socio-Geography of Human Mobility: A Study Using Longitudinal Mobile Phone Data. PLoS ONE, 2012.

  • This study used a year’s call logs and location data of approximately one million mobile phone users in Portugal to analyze the association between individuals’ mobility and their social networks.
  • It measures and analyze travel scope (locations visited) and geo-social radius (distance from friends, family, and acquaintances) to determine the association.
  • It finds that 80% of places visited are within 20 km of an individual’s nearest social ties’ location and it rises to 90% at 45 km radius. Further, as population density increases, distance between individuals and their social networks decreases.
  • The findings in this study demonstrates how mobile phone data can provide insights to “the socio-geography of human mobility”.

Semanjski, Ivana, and Sidharta Gautama. Crowdsourcing Mobility Insights – Reflection of Attitude Based Segments on High Resolution Mobility Behaviour Data. vol. 71, Transportation Research, 2016.

  • Using cellphone data, this study maps attitudinal segments that explain how age, gender, occupation, household size, income, and car ownership influence an individual’s mobility patterns. This type of segment analysis is seen as particularly useful for targeted messaging.
  • The authors argue that these time- and space-specific insights could also provide value for government officials and policymakers, by, for example, allowing for evidence-based transportation pricing options and public sector advertising campaign placement.

Silveira, Lucas M., et al. MobHet: Predicting Human Mobility using Heterogeneous Data Sources. vol. 95, Computer Communications , 2016.

  • This study explores the potential of using data from multiple sources (e.g., Twitter and Foursquare), in addition to GPS data, to provide a more accurate prediction of human mobility. This heterogenous data captures popularity of different locations, frequency of visits to those locations, and the relationships among people who are moving around the target area. The authors’ initial experimentation finds that the combination of these sources of data are demonstrated to be more accurate in identifying human mobility patterns.

Wilson, Robin, et al. Rapid and Near Real-Time Assessments of Population Displacement Using Mobile Phone Data Following Disasters: The 2015 Nepal Earthquake. PLOS Current Disasters, 2016.

  • Utilizing call detail records of 12 million mobile phone users in Nepal, this study seeks spatio-temporal details of the population after the earthquake on April 25, 2015.
  • It seeks to answer the problem of slow and ineffective disaster response, by capturing near real-time displacement pattern provided by mobile phone call detail records, in order to inform humanitarian agencies on where to distribute their assistance. The preliminary results of this study were available nine days after the earthquake.
  • This project relies on the foundational cooperation with mobile phone operator, who supplied the de-identified data from 12 million users, before the earthquake.
  • The study finds that shortly after the earthquake there was an anomalous population movement out of the Kathmandu Valley, the most impacted area, to surrounding areas. The study estimates 390,000 people above normal had left the valley.

Data, Gender and Mobility

Althoff, Tim, et al. “Large-Scale Physical Activity Data Reveal Worldwide Activity Inequality.” Nature, 2017.

  • This study’s analysis of worldwide physical activity is built on a dataset containing 68 million days of physical activity of 717,527 people collected through their smartphone accelerometers.
  • The authors find a significant reduction in female activity levels in cities with high active inequality, where high active inequality is associated with low city walkability – walkability indicators include pedestrian facilities (city block length, intersection density, etc.) and amenities (shops, parks, etc.).
  • Further, they find that high active inequality is associated with high levels of inactivity-related health problems, like obesity.

Borker, Girija. “Safety First: Street Harassment and Women’s Educational Choices in India.” Stop Street Harassment, 2017.

  • Using data collected from SafetiPin, an application that allows user to mark an area on a map as safe or not, and Safecity, another application that lets users share their experience of harassment in public places, the researcher analyzes the safety of travel routes surrounding different colleges in India and their effect on women’s college choices.
  • The study finds that women are willing to go to a lower ranked college in order to avoid higher risk of street harassment. Women who choose the best college from their set of options, spend an average of $250 more each year to access safer modes of transportation.

Frias-Martinez, Vanessa, Enrique Frias-Martinez, and Nuria Oliver. A Gender-Centric Analysis of Calling Behavior in a Developing Economy Using Call Detail Records. Association for the Advancement of Articial Intelligence, 2010.

  • Using encrypted Call Detail Records (CDRs) of 10,000 participants in a developing economy, this study analyzes the behavioral, social, and mobility variables to determine the gender of a mobile phone user, and finds that there is a difference in behavioral and social variables in mobile phone use between female and male.
  • It finds that women have higher usage of phone in terms of number of calls made, call duration, and call expenses compared to men. Women also have bigger social network, meaning that the number of unique phone numbers that contact or get contacted is larger. It finds no statistically significant difference in terms of distance made between calls in men and women.
  • Frias-Martinez et al recommends to take these findings into consideration when designing a cellphone based service.

Psylla, Ioanna, Piotr Sapiezynski, Enys Mones, Sune Lehmann. “The role of gender in social network organization.” PLoS ONE 12, December 20, 2017.

  • Using a large dataset of high resolution data collected through mobile phones, as well as detailed questionnaires, this report studies gender differences in a large cohort. The researchers consider mobility behavior and individual personality traits among a group of more than 800 university students.
  • Analyzing mobility data, they find both that women visit more unique locations over time, and that they have more homogeneous time distribution over their visited locations than men, indicating the time commitment of women is more widely spread across places.

Vaitla, Bapu. Big Data and the Well-Being of Women and Girls: Applications on the Social Scientific Frontier. Data2X, Apr. 2017.

  • In this study, the researchers use geospatial data, credit card and cell phone information, and social media posts to identify problems–such as malnutrition, education, access to healthcare, mental health–facing women and girls in developing countries.
  • From the credit card and cell phone data in particular, the report finds that analyzing patterns of women’s spending and mobility can provide useful insight into Latin American women’s “economic lifestyles.”
  • Based on this analysis, Vaitla recommends that various untraditional big data be used to fill gaps in conventional data sources to address the common issues of invisibility of women and girls’ data in institutional databases.

Visualizing the Uncertainty in Data


Nathan Yau at FlowingData: “Data is a representation of real life. It’s an abstraction, and it’s impossible to encapsulate everything in a spreadsheet, which leads to uncertainty in the numbers.

How well does a sample represent a full population? How likely is it that a dataset represents the truth? How much do you trust the numbers?

Statistics is a game where you figure out these uncertainties and make estimated judgements based on your calculations. But standard errors, confidence intervals, and likelihoods often lose their visual space in data graphics, which leads to judgements based on simplified summaries expressed as means, medians, or extremes.

That’s no good. You miss out on the interesting stuff. The important stuff. So here are some visualization options for the uncertainties in your data, each with its pros, cons, and examples….(More)”.

Social Theory After the Internet: Media, Technology and Globalization


(Open Access) Book by Ralph Schroeder: “The internet has fundamentally transformed society in the past 25 years, yet existing theories of mass or interpersonal communication do not work well in understanding a digital world. Nor has this understanding been helped by disciplinary specialization and a continual focus on the latest innovations. Ralph Schroeder takes a longer-term view, synthesizing perspectives and findings from various social science disciplines in four countries: the United States, Sweden, India and China. His comparison highlights, among other observations, that smartphones are in many respects more important than PC-based internet uses.

Social Theory after the Internet focuses on everyday uses and effects of the internet, including information seeking and big data, and explains how the internet has gone beyond traditional media in, for example, enabling Donald Trump and Narendra Modi to come to power. Schroeder puts forward a sophisticated theory of the role internet plays, and how both technological and social forces shape its significance. He provides a sweeping and penetrating study, theoretically ambitious and at the same time always empirically grounded….(More)”.

A.I. and Big Data Could Power a New War on Poverty


Elisabeth A. Mason in The New York Times: “When it comes to artificial intelligence and jobs, the prognostications are grim. The conventional wisdom is that A.I. might soon put millions of people out of work — that it stands poised to do to clerical and white collar workers over the next two decades what mechanization did to factory workers over the past two. And that is to say nothing of the truckers and taxi drivers who will find themselves unemployed or underemployed as self-driving cars take over our roads.

But it’s time we start thinking about A.I.’s potential benefits for society as well as its drawbacks. The big-data and A.I. revolutions could also help fight poverty and promote economic stability.

Poverty, of course, is a multifaceted phenomenon. But the condition of poverty often entails one or more of these realities: a lack of income (joblessness); a lack of preparedness (education); and a dependency on government services (welfare). A.I. can address all three.

First, even as A.I. threatens to put people out of work, it can simultaneously be used to match them to good middle-class jobs that are going unfilled. Today there are millions of such jobs in the United States. This is precisely the kind of matching problem at which A.I. excels. Likewise, A.I. can predict where the job openings of tomorrow will lie, and which skills and training will be needed for them….

Second, we can bring what is known as differentiated education — based on the idea that students master skills in different ways and at different speeds — to every student in the country. A 2013 study by the National Institutes of Health found that nearly 40 percent of medical students held a strong preference for one mode of learning: Some were listeners; others were visual learners; still others learned best by doing….

Third, a concerted effort to drag education and job training and matching into the 21st century ought to remove the reliance of a substantial portion of the population on government programs designed to assist struggling Americans. With 21st-century technology, we could plausibly reduce the use of government assistance services to levels where they serve the function for which they were originally intended…(More)”.

Big Data Challenge for Social Sciences: From Society and Opinion to Replications


Symposium Paper by Dominique Boullier: “When in 2007 Savage and Burrows pointed out ‘the coming crisis of empirical methods’, they were not expecting to be so right. Their paper however became a landmark, signifying the social sciences’ reaction to the tremendous shock triggered by digital methods. As they frankly acknowledge in a more recent paper, they did not even imagine the extent to which their prediction might become true, in an age of Big Data, where sources and models have to be revised in the light of extended computing power and radically innovative mathematical approaches.They signalled not just a debate about academic methods but also a momentum for ‘commercial sociology’ in which platforms acquire the capacity to add ‘another major nail in the coffin of academic sociology claims to jurisdiction over knowledge of the social’, because ‘research methods (are) an intrinsic feature of contemporary capitalist organisations’ (Burrows and Savage, 2014, p. 2). This need for a serious account of research methods is well tuned with the claims of Social Studies of Science that should be applied to the social sciences as well.

I would like to build on these insights and principles of Burrows and Savage to propose an historical and systematic account of quantification during the last century, following in the footsteps of Alain Desrosières, and in which we see Big Data and Machine Learning as a major shift in the way social science can be performed. And since, according to Burrows and Savage (2014, p. 5), ‘the use of new data sources involves a contestation over the social itself’, I will take the risk here of identifying and defining the entities that are supposed to encapsulate the social for each kind of method: beyond the reign of ‘society’ and ‘opinion’, I will point at the emergence of the ‘replications’ that are fabricated by digital platforms but are radically different from previous entities. This is a challenge to invent not only new methods but also a new process of reflexivity for societies, made available by new stakeholders (namely, the digital platforms) which transform reflexivity into reactivity (as operational quantifiers always tend to)….(More)”.