Paper by Ivo D Dinov et al: “The UK Biobank is a rich national health resource that provides enormous opportunities for international researchers to examine, model, and analyze census-like multisource healthcare data. The archive presents several challenges related to aggregation and harmonization of complex data elements, feature heterogeneity and salience, and health analytics. Using 7,614 imaging, clinical, and phenotypic features of 9,914 subjects we performed deep computed phenotyping using unsupervised clustering and derived two distinct sub-cohorts. Using parametric and nonparametric tests, we determined the top 20 most salient features contributing to the cluster separation. Our approach generated decision rules to predict the presence and progression of depression or other mental illnesses by jointly representing and modeling the significant clinical and demographic variables along with the derived salient neuroimaging features. We reported consistency and reliability measures of the derived computed phenotypes and the top salient imaging biomarkers that contributed to the unsupervised clustering. This clinical decision support system identified and utilized holistically the most critical biomarkers for predicting mental health, e.g., depression. External validation of this technique on different populations may lead to reducing healthcare expenses and improving the processes of diagnosis, forecasting, and tracking of normal and pathological aging….(More)”.
Tracking Phones, Google Is a Dragnet for the Police
Jennifer Valentino-DeVries at the New York Times: “….The warrants, which draw on an enormous Google database employees call Sensorvault, turn the business of tracking cellphone users’ locations into a digital dragnet for law enforcement. In an era of ubiquitous data gathering by tech companies, it is just the latest example of how personal information — where you go, who your friends are, what you read, eat and watch, and when you do it — is being used for purposes many people never expected. As privacy concerns have mounted among consumers, policymakers and regulators, tech companies have come under intensifying scrutiny over their data collection practices.
The Arizona case demonstrates the promise and perils of the new investigative technique, whose use has risen sharply in the past six months, according to Google employees familiar with the requests. It can help solve crimes. But it can also snare innocent people.
Technology companies have for years responded to court orders for specific users’ information. The new warrants go further, suggesting possible suspects and witnesses in the absence of other clues. Often, Google employees said, the company responds to a single warrant with location information on dozens or hundreds of devices.
Law enforcement officials described the method as exciting, but cautioned that it was just one tool….
The technique illustrates a phenomenon privacy advocates have long referred to as the “if you build it, they will come” principle — anytime a technology company creates a system that could be used in surveillance, law enforcement inevitably comes knocking. Sensorvault, according to Google employees, includes detailed location records involving at least hundreds of millions of devices worldwide and dating back nearly a decade….(More)”.
Access to Algorithms
Paper by Hannah Bloch-Wehba: “Federal, state, and local governments increasingly depend on automated systems — often procured from the private sector — to make key decisions about civil rights and civil liberties. When individuals affected by these decisions seek access to information about the algorithmic methodologies that produced them, governments frequently assert that this information is proprietary and cannot be disclosed.
Recognizing that opaque algorithmic governance poses a threat to civil rights and liberties, scholars have called for a renewed focus on transparency and accountability for automated decision making. But scholars have neglected a critical avenue for promoting public accountability and transparency for automated decision making: the law of access to government records and proceedings. This Article fills this gap in the literature, recognizing that the Freedom of Information Act, its state equivalents, and the First Amendment provide unappreciated legal support for algorithmic transparency.
The law of access performs three critical functions in promoting algorithmic accountability and transparency. First, by enabling any individual to challenge algorithmic opacity in government records and proceedings, the law of access can relieve some of the burden otherwise borne by parties who are often poor and under-resourced. Second, access law calls into question government’s procurement of algorithmic decision making technologies from private vendors, subject to contracts that include sweeping protections for trade secrets and intellectual property rights. Finally, the law of access can promote an urgently needed public debate on algorithmic governance in the public sector….(More)”.
Statistics Estonia to coordinate data governance
Article by Miriam van der Sangen at CBS: “In 2018, Statistics Estonia launched a new strategy for the period 2018-2022. This strategy addresses the organisation’s aim to produce statistics more quickly while minimising the response burden on both businesses and citizens. Another element in the strategy is addressing the high expectations in Estonian society regarding the use of data. ‘We aim to transform Statistics Estonia into a national data agency,’ says Director General Mägi. ‘This means our role as a producer of official statistics will be enlarged by data governance responsibilities in the public sector. Taking on such responsibilities requires a clear vision of the whole public data ecosystem and also agreement to establish data stewards in most public sector institutions.’…
the Estonian Parliament passed new legislation that effectively expanded the number of official tasks for Statistics Estonia. Mägi elaborates: ‘Most importantly, we shall be responsible for coordinating data governance. The detailed requirements and conditions of data governance will be specified further in the coming period.’ Under the new Act, Statistics Estonia will also have more possibilities to share data with other parties….
Statistics Estonia is fully committed to producing statistics which are based on big data. Mägi explains: ‘At the moment, we are actively working on two big data projects. One project involves the use of smart electricity meters. In this project, we are looking into ways to visualise business and household electricity consumption information. The second project involves web scraping of prices and enterprise characteristics. This project is still in an initial phase, but we can already see that the use of web scraping can improve the efficiency of our production process.’ We are aiming to extend the web scraping project by also identifying e-commerce and innovation activities of enterprises.’
Yet another ambitious goal for Statistics Estonia lies in the field of data science. ‘Similarly to Statistics Netherlands, we established experimental statistics and data mining activities years ago. Last year, we developed a so-called think-tank service, providing insights from data into all aspects of our lives. Think of birth, education, employment, et cetera. Our key clients are the various ministries, municipalities and the private sector. The main aim in the coming years is to speed up service time thanks to visualisations and data lake solutions.’ …(More)”.
Big Data Applications in Governance and Policy
Introduction to Special Issue of Politics and Governance by Sarah Giest and Reuben Ng: ” Recent literature has been trying to grasp the extent as to which big data applications affect the governance and policymaking of countries and regions (Boyd & Crawford, 2012; Giest, 2017; Höchtl, Parycek, & Schöllhammer, 2015; Poel, Meyer, & Schroeder, 2018). The discussion includes the comparison to e-government and evidence-based policymaking developments that existed long before the idea of big data entered the policy realm. The theoretical extent of this discussion however lacks some of the more practical consequences that come with the active use of data-driven applications. In fact, much of the work focuses on the input-side of policymaking, looking at which data and technology enters the policy process, however very little is dedicated to the output side.
In short, how has big data shaped data governance and policymaking? The contributions to this thematic issue shed light on this question by looking at a range of factors, such as campaigning in the US election (Trish, 2018) or local government data projects (Durrant, Barnett, & Rempel, 2018). The goal is to unpack the mixture of big data applications and existing policy processes in order to understand whether these new tools and applications enhance or hinder policymaking….(More)”.
The Privacy Project
The New York Times: “Companies and governments are gaining new powers to follow people across the internet and around the world, and even to peer into their genomes. The benefits of such advances have been apparent for years; the costs — in anonymity, even autonomy — are now becoming clearer. The boundaries of privacy are in dispute, and its future is in doubt. Citizens, politicians and business leaders are asking if societies are making the wisest tradeoffs. The Times is embarking on this months long project to explore the technology and where it’s taking us, and to convene debate about how it can best help realize human potential….(More)”
What Do They Know, and How Do They Know It?
Building Trust in Human Centric Artificial Intelligence
Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: “Artificial intelligence (AI) has the potential to transform our world for the better: it can improve healthcare, reduce energy consumption, make cars safer, and enable farmers to use water and natural resources more efficiently. AI can be used to predict environmental and climate change, improve financial risk management and provides the tools to manufacture, with less waste, products tailored to our needs. AI can also help to detect fraud and cybersecurity threats, and enables law enforcement agencies to fight crime more efficiently.
AI can benefit the whole of society and the economy. It is a strategic technology that is now being developed and used at a rapid pace across the world. Nevertheless, AI also brings with it new challenges for the future of work, and raises legal and ethical questions.
To address these challenges and make the most of the opportunities which AI offers, the Commission published a European strategy in April 2018. The strategy places people at the centre of the development of AI — human-centric AI. It is a three-pronged approach to boost the EU’s technological and industrial capacity and AI uptake across the economy, prepare for socio-economic changes, and ensure an appropriate ethical and legal framework.
To deliver on the AI strategy, the Commission developed together with Member States a coordinated plan on AI, which it presented in December 2018, to create synergies, pool data — the raw material for many AI applications — and increase joint investments. The aim is to foster cross-border cooperation and mobilise all players to increase public and private investments to at least EUR 20 billion annually over the next decade.
The Commission doubled its investments in AI in Horizon 2020 and plans to invest EUR 1 billion annually from Horizon Europe and the Digital Europe Programme, in support notably of common data spaces in health, transport and manufacturing, and large experimentation facilities such as smart hospitals and infrastructures for automated vehicles and a strategic research agenda.
To implement such a common strategic research, innovation and deployment agenda the Commission has intensified its dialogue with all relevant stakeholders from industry, research institutes and public authorities. The new Digital Europe programme will also be crucial in helping to make AI available to small and medium-size enterprises across all Member States through digital innovation hubs, strengthened testing and experimentation facilities, data spaces and training programmes.
Building on its reputation for safe and high-quality products, Europe’s ethical approach to AI strengthens citizens’ trust in the digital development and aims at building a competitive advantage for European AI companies. The purpose of this Communication is to launch a comprehensive piloting phase involving stakeholders on the widest scale in order to test the practical implementation of ethical guidance for AI development and use…(More)”.
Unblocking the Bottlenecks and Making the Global Supply Chain Transparent: How Blockchain Technology Can Update Global Trade
Paper by Hanna C Norberg: “Blockchain technology is still in its infancy, but already it has begun to revolutionize global trade. Its lure is irresistible because of the simplicity with which it can replace the standard methods of documentation, smooth out logistics, increase transparency, speed up transactions, and ameliorate the planning and tracking of trade.
Blockchain essentially provides the supply chain with an unalterable ledger of verified transactions, and thus enables trust every step of the way through the trade process. Every stakeholder involved in that process – from producer to warehouse worker to shipper to financial institution to recipient at the final destination – can trust that the information contained in that indelible ledger is accurate. Fraud will no longer be an issue, middlemen can be eliminated, shipments tracked, quality control maintained to highest standards and consumers can make decisions based on more than the price. Blockchain dramatically reduces the amount of paperwork involved, along with the myriad of agents typically involved in the process, all of this resulting in soaring efficiencies. Making the most of this new technology, however, requires solid policy. Most people have only a vague idea of what blockchain is. There needs to be a basic understanding of what blockchain can and can’t do, and how it works in the economy and in trade. Once they become familiar with the technology, policy-makers must move on to thinking about what technological issues could be mitigated, solved or improved.
Governments need to explore blockchain’s potential through its use in public-sector projects that demonstrate its workings, its potential and its inevitable limitations. Although blockchain is not nearly as evolved now as the internet was in 2005, co-operation among all stakeholders on issues like taxonomy or policy guides on basic principles is crucial. Those stakeholders include government, industry, academia and civil society. All this must be done while keeping in mind the global nature of blockchain and that blockchain regulations need to be made in synch with regulations on other issues are adjacent to the technology, such as electronic signatures. However, work can be done in the global arena through international initiatives and organizations such as the ISO….(More)”.
The Wrong Kind of AI? Artificial Intelligence and the Future of Labor Demand
NBER Paper by Daron Acemoglu and Pascual Restrepo: “Artificial Intelligence is set to influence every aspect of our lives, not least the way production is organized. AI, as a technology platform, can automate tasks previously performed by labor or create new tasks and activities in which humans can be productively employed. Recent technological change has been biased towards automation, with insufficient focus on creating new tasks where labor can be productively employed. The consequences of this choice have been stagnating labor demand, declining labor share in national income, rising inequality and lower productivity growth. The current tendency is to develop AI in the direction of further automation, but this might mean missing out on the promise of the “right” kind of AI with better economic and social outcomes….(More)”.
The Automated Administrative State
Paper by Danielle Citron and Ryan Calo: “The administrative state has undergone
Automated systems built in the early 2000s eroded procedural safeguards at the heart of the administrative state. When government makes important decisions that affect our lives, liberty, and property, it owes us “due process”— understood as notice of, and a chance to object to, those decisions. Automated systems, however, frustrate these guarantees. Some systems like the “no-fly” list were designed and deployed in secret; others lacked record-keeping audit trails, making review of the law and facts supporting a system’s decisions impossible. Because programmers working at private contractors lacked training in the law, they distorted policy when translating it into code [2].
Some of us in the academy sounded the alarm as early as the 1990s, offering an array of mechanisms to ensure the accountability and transparency of automated administrative state [3]. Yet the same pathologies continue to plague government decision-making systems today. In some cases, these pathologies have deepened and extended. Agencies lean upon algorithms that turn our personal data into predictions, professing to reflect who we are and what we will do. The algorithms themselves increasingly rely upon techniques, such as deep learning, that are even less amenable to scrutiny than purely statistical models. Ideals of what the administrative law theorist Jerry Mashaw has called “bureaucratic justice” in the form of efficiency with a “human face” feel impossibly distant [4].
The trend toward more prevalent and less transparent automation in agency decision-making is deeply concerning. For a start, we have yet to address in any meaningful way the widening gap between the commitments of due process and the actual practices of contemporary agencies [5]. Nonetheless, agencies rush to automate (surely due to the influence and illusive promises of companies seeking lucrative contracts), trusting algorithms to tell us if criminals should receive probation, if public school teachers should be fired, or if severely disabled individuals should receive less than the maximum of state-funded nursing care [6]. Child welfare agencies conduct intrusive home inspections because some system, which no party to the interaction understands, has rated a poor mother as having a propensity for violence. The challenges of preserving due process in light of algorithmic decision-making is an area of renewed and active attention within academia, civil society, and even the courts [7].
Second, and routinely overlooked, we are applying the new affordances of artificial intelligence in precisely the wrong contexts…(More)”.