From Tech-Driven to Human-Centred: Opengov has a Bright Future Ahead


Essay by Martin Tisné: ” The anti-corruption and transparency field ten years ago was in pre-iPhone mode. Few if any of us spoke of the impact or relevance of technology to what would become known as the open government movement. When the wave of smart phone and other technology hit from the late 2000s onwards, it hit hard, and scaled fast. The ability of technology to create ‘impact at scale’ became the obvious truism of our sector, so much so that pointing out the failures of techno-utopianism became a favorite pastime for pundits and academics. The technological developments of the next ten years will be more human-centered — less ‘build it and they will come’ — and more aware of the un-intended consequences of technology (e.g. the fairness of Artifical Intelligence decision making) whilst still being deeply steeped in the technology itself.

By 2010, two major open data initiatives had launched and were already seen as successful in the US and UK, one of President Obama’s first memorandums was on openness and transparency, and an international research project had tracked 63 different instances of uses of technology for transparency around the world (from Reclamos in Chile, to I Paid a Bribe in India, via Maji Matone in Tanzania). Open data projects numbered over 200 world-wide within barely a year of data.gov.uk launching and to everyone’s surprise topped the list of Open Government Partnership commitments a few years hence.

The technology genie won’t go back into the bottle: the field will continue to grow alongside technological developments. But it would take a bold or foolish pundit to guess which of blockchain or other developments will have radically changed the field by 2025.

What is clearer is that the sector is more questioning towards technology, more human-centered both in the design of those technologies and in seeking to understand and pre-empt their impact….

We’ve moved from cyber-utopianism less than ten years ago to born-digital organisations taking a much more critical look at the deployment of technology. The evangelical phase of the open data movement is coming to an end. The movement no longer needs to preach the virtues of unfettered openness to get a foot in the door. It seeks to frame the debate as to whether, when and how data might legitimately be shared or closed, and what impacts those releases may have on privacy, surveillance, discrimination. An open government movement that is more human-centered and aware of the un-intended consequences of technology, has a bright and impactful future ahead….(More)”

Between Governance of the Past and Technology of the Future


Think Piece by Heather Grabbe for ESPAS 2016 conference: ” In many parts of everyday life, voters are used to a consumer experience where they get instant feedback and personal participation; but party membership, ballot boxes and stump speeches do not offer the same speed, control or personal engagement. The institutions of representative democracy at national and EU level — political parties, elected members, law-making — do not offer the same quality of experience for their ultimate consumers.

This matters because it is causing voters to switch off. Broad participation by most of the population in the practice of democracy is vital for societies to remain open because it ensures pluralism and prevents takeover of power by narrow interests. But in some countries and some elections, turnout is regularly below a third of registered voters, especially in European Parliament elections.

The internet is driving the major trends that create this disconnection and disruption. Here are four vital areas in which politics should adapt, including at EU level:

  • Expectation. Voters have a growing sense that political parties and law-making are out of touch, but not that politics is irrelevant. …
  • Affiliation. … people are interested in new forms of affiliation, especially through social media and alternative networks. …
  • Location. Digital technology allows people to find myriad new ways to express their political views publicly, outside of formal political spaces. …
  • Information. The internet has made vast amounts of data and a huge range of information sources across an enormous spectrum of issues available to every human with an internet connection. How is this information overload affecting engagement with politics? ….(More)”

What’s wrong with big data?


James Bridle in the New Humanist: “In a 2008 article in Wired magazine entitled “The End of Theory”, Chris Anderson argued that the vast amounts of data now available to researchers made the traditional scientific process obsolete. No longer would they need to build models of the world and test them against sampled data. Instead, the complexities of huge and totalising datasets would be processed by immense computing clusters to produce truth itself: “With enough data, the numbers speak for themselves.” As an example, Anderson cited Google’s translation algorithms which, with no knowledge of the underlying structures of languages, were capable of inferring the relationship between them using extensive corpora of translated texts. He extended this approach to genomics, neurology and physics, where scientists are increasingly turning to massive computation to make sense of the volumes of information they have gathered about complex systems. In the age of big data, he argued, “Correlation is enough. We can stop looking for models.”

This belief in the power of data, of technology untrammelled by petty human worldviews, is the practical cousin of more metaphysical assertions. A belief in the unquestionability of data leads directly to a belief in the truth of data-derived assertions. And if data contains truth, then it will, without moral intervention, produce better outcomes. Speaking at Google’s private London Zeitgeist conference in 2013, Eric Schmidt, Google Chairman, asserted that “if they had had cellphones in Rwanda in 1994, the genocide would not have happened.” Schmidt’s claim was that technological visibility – the rendering of events and actions legible to everyone – would change the character of those actions. Not only is this statement historically inaccurate (there was plenty of evidence available of what was occurring during the genocide from UN officials, US satellite photographs and other sources), it’s also demonstrably untrue. Analysis of unrest in Kenya in 2007, when over 1,000 people were killed in ethnic conflicts, showed that mobile phones not only spread but accelerated the violence. But you don’t need to look to such extreme examples to see how a belief in technological determinism underlies much of our thinking and reasoning about the world.

“Big data” is not merely a business buzzword, but a way of seeing the world. Driven by technology, markets and politics, it has come to determine much of our thinking, but it is flawed and dangerous. It runs counter to our actual findings when we employ such technologies honestly and with the full understanding of their workings and capabilities. This over-reliance on data, which I call “quantified thinking”, has come to undermine our ability to reason meaningfully about the world, and its effects can be seen across multiple domains.

The assertion is hardly new. Writing in the Dialectic of Enlightenment in 1947, Theodor Adorno and Max Horkheimer decried “the present triumph of the factual mentality” – the predecessor to quantified thinking – and succinctly analysed the big data fallacy, set out by Anderson above. “It does not work by images or concepts, by the fortunate insights, but refers to method, the exploitation of others’ work, and capital … What men want to learn from nature is how to use it in order wholly to dominate it and other men. That is the only aim.” What is different in our own time is that we have built a world-spanning network of communication and computation to test this assertion. While it occasionally engenders entirely new forms of behaviour and interaction, the network most often shows to us with startling clarity the relationships and tendencies which have been latent or occluded until now. In the face of the increased standardisation of knowledge, it becomes harder and harder to argue against quantified thinking, because the advances of technology have been conjoined with the scientific method and social progress. But as I hope to show, technology ultimately reveals its limitations….

“Eroom’s law” – Moore’s law backwards – was recently formulated to describe a problem in pharmacology. Drug discovery has been getting more expensive. Since the 1950s the number of drugs approved for use in human patients per billion US dollars spent on research and development has halved every nine years. This problem has long perplexed researchers. According to the principles of technological growth, the trend should be in the opposite direction. In a 2012 paper in Nature entitled “Diagnosing the decline in pharmaceutical R&D efficiency” the authors propose and investigate several possible causes for this. They begin with social and physical influences, such as increased regulation, increased expectations and the exhaustion of easy targets (the “low hanging fruit” problem). Each of these are – with qualifications – disposed of, leaving open the question of the discovery process itself….(More)

Teaching an Algorithm to Understand Right and Wrong


Greg Satell at Harvard Business Review: “In his Nicomachean Ethics, Aristotle states that it is a fact that “all knowledge and every pursuit aims at some good,” but then continues, “What then do we mean by the good?” That, in essence, encapsulates the ethical dilemma. We all agree that we should be good and just, but it’s much harder to decide what that entails.

Since Aristotle’s time, the questions he raised have been continually discussed and debated. From the works of great philosophers like Kant, Bentham, andRawls to modern-day cocktail parties and late-night dorm room bull sessions, the issues are endlessly mulled over and argued about but never come to a satisfying conclusion.

Today, as we enter a “cognitive era” of thinking machines, the problem of what should guide our actions is gaining newfound importance. If we find it so difficult to denote the principles by which a person should act justly and wisely, then how are we to encode them within the artificial intelligences we are creating? It is a question that we need to come up with answers for soon.

Designing a Learning Environment

Every parent worries about what influences their children are exposed to. What TV shows are they watching? What video games are they playing? Are they hanging out with the wrong crowd at school? We try not to overly shelter our kids because we want them to learn about the world, but we don’t want to expose them to too much before they have the maturity to process it.

In artificial intelligence, these influences are called a “machine learning corpus.”For example, if you want to teach an algorithm to recognize cats, you expose it to thousands of pictures of cats and things that are not cats. Eventually, it figures out how to tell the difference between, say, a cat and a dog. Much as with human beings, it is through learning from these experiences that algorithms become useful.

However, the process can go horribly awry, as in the case of Microsoft’s Tay, aTwitter bot that the company unleashed on the microblogging platform. In under a day, Tay went from being friendly and casual (“Humans are super cool”) to downright scary (“Hitler was right and I hate Jews”). It was profoundly disturbing.

Francesca Rossi, an AI researcher at IBM, points out that we often encode principles regarding influences into societal norms, such as what age a child needs to be to watch an R-rated movie or whether they should learn evolution in school. “We need to decide to what extent the legal principles that we use to regulate humans can be used for machines,” she told me.

However, in some cases algorithms can alert us to bias in our society that we might not have been aware of, such as when we Google “grandma” and see only white faces. “There is a great potential for machines to alert us to bias,” Rossi notes. “We need to not only train our algorithms but also be open to the possibility that they can teach us about ourselves.”…

Another issue that we will have to contend with is that we will have to decide not only what ethical principles to encode in artificial intelligences but also how they are coded. As noted above, for the most part, “Thou shalt not kill” is a strict principle. Other than a few rare cases, such as the Secret Service or a soldier, it’s more like a preference that is greatly affected by context….

As pervasive as artificial intelligence is set to become in the near future, the responsibility rests with society as a whole. Put simply, we need to take the standards by which artificial intelligences will operate just as seriously as those that govern how our political systems operate and how are children are educated.

It is a responsibility that we cannot shirk….(More)

Federal Privacy Council’s Law Library


Federal Privacy Council: “The Law Library is a compilation of information about and links to select Federal laws related to the creation, collection, use, processing, storage, maintenance, dissemination, disclosure, and disposal of personally identifiable information (PII) by departments and agencies within the Federal Government. The Law Library does not include all laws that are relevant to privacy or the management of PII in the Federal Government.

The Law Library only includes laws applicable to the Federal Government. Although some of the laws included may also be applicable to entities outside of the Federal Government, the information provided on the Law Library pages is strictly limited to the application of those laws to the Federal Government; the information provided does not in any way address the application of any law to the private sector or other non-Federal entities.

The Law Library pages have been prepared by members of the Federal Privacy Council and consist of information from and links to other Federal Government websites. The Federal Privacy Council is not responsible for the content of any third-party website, and links to other websites do not constitute or imply endorsement or recommendation of those sites or the information they provide.

The material in the Law Library is provided for informational purposes only. The information provided may not reflect current legal developments or agency-specific requirements, and it may not be correct or complete. The Federal Privacy Council does not have authority to provide legal advice, to set policies for the Federal Government, or to represent the views of the Federal Government or the views of any agency within the Federal Government; accordingly, the information on this website in no way constitutes policy or legal advice, nor does it in any way reflect Federal Government views or opinions.  Agencies shall consult law, regulation, and policy, including OMB guidance, to understand applicable requirements….(More)”

Open Data Collection (PLOS)


Daniella Lowenberg, Amy Ross, Emma Ganley at PLOS: “In the spirit of Open Con and highlighting the state of Open Data, PLOS is proud to release our Open Data Collection. The many values of Open Data are becoming increasingly apparent, and as a result, we are seeing an adoption of Open Data policies across publishers, funders and organizations. Open Data has proven a fantastic tool to help evaluate the replicability of published research, and even politicians are taking a stand in favor of Open Data as a mechanism to advance science rapidly. In March of 2014, PLOS updated our Data Policy to reflect the need for the underlying data to be as open as the paper itself resulting in complete transparency of the research. Two and-a-half years later, we have seen over 60,000 published papers with open data sets and an increase in submissions reflecting open data practices and policies….

To create this Open Data Collection, we exhaustively searched for relevant articles published across PLOS that discuss open data in some way. Then, in collaboration with our external advisor, Melissa Haendel, we have selected 26 of those articles with the aim to highlight a broad scope of research articles, guidelines, and commentaries about data sharing, data practices, and data policies from different research fields. Melissa has written an engaging blog post detailing the rubric and reasons behind her selections….(More)”

Is Social Media Killing Democracy?


Phil Howard at Culture Digitally: “This is the big year for computational propaganda—using immense data sets to manipulate public opinion over social media.  Both the Brexit referendum and US election have revealed the limits of modern democracy, and social media platforms are currently setting those limits. 

Platforms like Twitter and Facebook now provide a structure for our political lives.  We’ve always relied on many kinds of sources for our political news and information.  Family, friends, news organizations, charismatic politicians certainly predate the internet.  But whereas those are sources of information, social media now provides the structure for political conversation.  And the problem is that these technologies permit too much fake news, encourage our herding instincts, and aren’t expected to provide public goods.

First, social algorithms allow fake news stories from untrustworthy sources to spread like wildfire over networks of family and friends.  …

Second, social media algorithms provide very real structure to what political scientists often call “elective affinity” or “selective exposure”…

The third problem is that technology companies, including Facebook and Twitter, have been given a “moral pass” on the obligations we hold journalists and civil society groups to….

Facebook has run several experiments now, published in scholarly journals, demonstrating that they have the ability to accurately anticipate and measure social trends.  Whereas journalists and social scientists feel an obligation to openly analyze and discuss public preferences, we do not expect this of Facebook.  The network effects that clearly were unmeasured by pollsters were almost certainly observable to Facebook.  When it comes to news and information about politics, or public preferences on important social questions, Facebook has a moral obligation to share data and prevent computational propaganda.  The Brexit referendum and US election have taught us that Twitter and Facebook are now media companies.  Their engineering decisions are effectively editorial decisions, and we need to expect more openness about how their algorithms work.  And we should expect them to deliberate about their editorial decisions.

There are some ways to fix these problems.  Opaque software algorithms shape what people find in their news feeds.  We’ve all noticed fake news stories, often called clickbait, and while these can be an entertaining part of using the internet, it is bad when they are used to manipulate public opinion.  These algorithms work as “bots” on social media platforms like Twitter, where they were used in both the Brexit and US Presidential campaign to aggressively advance the case for leaving Europe and the case for electing Trump.  Similar algorithms work behind the scenes on Facebook, where they govern what content from your social networks actually gets your attention. 

So the first way to strengthen democratic practices is for academics, journalists, policy makers and the interested public to audit social media algorithms….(More)”.

Open data aims to boost food security prospects


Mark Kinver at BBC News: “Rothamsted Research, a leading agricultural research institution, is attempting to make data from long-term experiments available to all.

In partnership with a data consultancy, is it developing a method to make complex results accessible and useable.

The institution is a member of the Godan Initiative that aims to make data available to the scientific community.

In September, Godan called on the public to sign its global petition to open agricultural research data.

“The continuing challenge we face is that the raw data alone is not sufficient enough on its own for people to make sense of it,” said Chris Rawlings, head of computational and systems biology at Rothamsted Research.

“This is because the long-term experiments are very complex, and they are looking at agriculture and agricultural ecosystems so you need to know a lot of about what the intention of the studies are, how they are being used, and the changes that have taken place over time.”

However, he added: “Even with this level of complexity, we do see significant number of users contacting us or developing links with us.”

One size fits all

The ability to provide open data to all is one of the research organisation’s national capabilities, and forms a defining principle of its web portal to the experiments carried out at its North Wyke Farm Platform in North Devon.

Rothamsted worked in partnership with Tessella, a data consultancy, on the data collected from the experiments, which focused on livestock pastures.

The information being collected, as often as every 15 minutes, includes water run-off levels, soil moisture, meteorological data, and soil nutrients, and this is expected to run for decades.

“The data is quite varied and quite diverse, and [Rothamsted] wants to make to make this data available to the wider research community,” explained Tessella’s Andrew Bowen.

“What Rothamsted needed was a way to store it and a way to present it in a portal in which people could see what they had to offer.”

He told BBC News that there were a number of challenges that needed to be tackled.

One was the management of the data, and the team from Tessella adopted an “agile scrum” approach.

“Basically, what you do is draw up a list of the requirements, of what you need, and we break the project down into short iterations, starting with the highest priority,” he said.

“This means that you are able to take a more exploratory approach to the process of developing software. This is very well suited to the research environment.”…(More)”

Understanding the four types of AI, from reactive robots to self-aware beings


 at The Conversation: “…We need to overcome the boundaries that define the four different types of artificial intelligence, the barriers that separate machines from us – and us from them.

Type I AI: Reactive machines

The most basic types of AI systems are purely reactive, and have the ability neither to form memories nor to use past experiences to inform current decisions. Deep Blue, IBM’s chess-playing supercomputer, which beat international grandmaster Garry Kasparov in the late 1990s, is the perfect example of this type of machine.

Deep Blue can identify the pieces on a chess board and know how each moves. It can make predictions about what moves might be next for it and its opponent. And it can choose the most optimal moves from among the possibilities.

But it doesn’t have any concept of the past, nor any memory of what has happened before. Apart from a rarely used chess-specific rule against repeating the same move three times, Deep Blue ignores everything before the present moment. All it does is look at the pieces on the chess board as it stands right now, and choose from possible next moves.

This type of intelligence involves the computer perceiving the world directly and acting on what it sees. It doesn’t rely on an internal concept of the world. In a seminal paper, AI researcher Rodney Brooks argued that we should only build machines like this. His main reason was that people are not very good at programming accurate simulated worlds for computers to use, what is called in AI scholarship a “representation” of the world….

Type II AI: Limited memory

This Type II class contains machines can look into the past. Self-driving cars do some of this already. For example, they observe other cars’ speed and direction. That can’t be done in a just one moment, but rather requires identifying specific objects and monitoring them over time.

These observations are added to the self-driving cars’ preprogrammed representations of the world, which also include lane markings, traffic lights and other important elements, like curves in the road. They’re included when the car decides when to change lanes, to avoid cutting off another driver or being hit by a nearby car.

But these simple pieces of information about the past are only transient. They aren’t saved as part of the car’s library of experience it can learn from, the way human drivers compile experience over years behind the wheel…;

Type III AI: Theory of mind

We might stop here, and call this point the important divide between the machines we have and the machines we will build in the future. However, it is better to be more specific to discuss the types of representations machines need to form, and what they need to be about.

Machines in the next, more advanced, class not only form representations about the world, but also about other agents or entities in the world. In psychology, this is called “theory of mind” – the understanding that people, creatures and objects in the world can have thoughts and emotions that affect their own behavior.

This is crucial to how we humans formed societies, because they allowed us to have social interactions. Without understanding each other’s motives and intentions, and without taking into account what somebody else knows either about me or the environment, working together is at best difficult, at worst impossible.

If AI systems are indeed ever to walk among us, they’ll have to be able to understand that each of us has thoughts and feelings and expectations for how we’ll be treated. And they’ll have to adjust their behavior accordingly.

Type IV AI: Self-awareness

The final step of AI development is to build systems that can form representations about themselves. Ultimately, we AI researchers will have to not only understand consciousness, but build machines that have it….

While we are probably far from creating machines that are self-aware, we should focus our efforts toward understanding memory, learning and the ability to base decisions on past experiences….(More)”

AI Ethics: The Future of Humanity 


Report by sparks & honey: “Through our interaction with machines, we develop emotional, human expectations of them. Alexa, for example, comes alive when we speak with it. AI is and will be a representation of its cultural context, the values and ethics we apply to one another as humans.

This machinery is eerily familiar as it mirrors us, and eventually becomes even smarter than us mere mortals. We’re programming its advantages based on how we see ourselves and the world around us, and we’re doing this at an incredible pace. This shift is pervading culture from our perceptions of beauty and aesthetics to how we interact with one another – and our AI.

Infused with technology, we’re asking: what does it mean to be human?

Our report examines:

• The evolution of our empathy from humans to animals and robots
• How we treat AI in its infancy like we do a child, allowing it space to grow
• The spectrum of our emotional comfort in a world embracing AI
• The cultural contexts fueling AI biases, such as gender stereotypes, that drive the direction of AI
• How we place an innate trust in machines, more than we do one another (Download for free)”