Urban Analytics (Updated and Expanded)


As part of an ongoing effort to build a knowledge base for the field of opening governance by organizing and disseminating its learnings, the GovLab Selected Readings series provides an annotated and curated collection of recommended works on key opening governance topics. In this edition, we explore the literature on Urban Analytics. To suggest additional readings on this or any other topic, please email biblio@thegovlab.org.

Data and its uses for Governance

Urban Analytics places better information in the hands of citizens as well as government officials to empower people to make more informed choices. Today, we are able to gather real-time information about traffic, pollution, noise, and environmental and safety conditions by culling data from a range of tools: from the low-cost sensors in mobile phones to more robust monitoring tools installed in our environment. With data collected and combined from the built, natural and human environments, we can develop more robust predictive models and use those models to make policy smarter.

With the computing power to transmit and store the data from these sensors, and the tools to translate raw data into meaningful visualizations, we can identify problems as they happen, design new strategies for city management, and target the application of scarce resources where they are most needed.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)
Amini, L., E. Bouillet, F. Calabrese, L. Gasparini, and O. Verscheure. “Challenges and Results in City-scale Sensing.” In IEEE Sensors, 59–61, 2011. http://bit.ly/1doodZm.

  • This paper examines “how city requirements map to research challenges in machine learning, optimization, control, visualization, and semantic analysis.”
  • The authors raises several research challenges including how to extract accurate information when the data is noisy and sparse; how to represent findings from digital pervasive technologies; and how people interact with one another and their environment.

Batty, M., K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. Wachowicz, G. Ouzounis, and Y. Portugali. “Smart Cities of the Future.The European Physical Journal Special Topics 214, no. 1 (November 1, 2012): 481–518. http://bit.ly/HefbjZ.

  • This paper explores the goals and research challenges involved in the development of smart cities that merge ICT with traditional infrastructures through digital technologies.
  • The authors put forth several research objectives, including: 1) to explore the notion of the city as a laboratory for innovation; 2) to develop technologies that ensure equity, fairness and realize a better quality of city life; and 3) to develop technologies that ensure informed participation and create shared knowledge for democratic city governance.
  • The paper also examines several contemporary smart city initiatives, expected paradigm shifts in the field, benefits, risks and impacts.

Budde, Paul. “Smart Cities of Tomorrow.” In Cities for Smart Environmental and Energy Futures, edited by Stamatina Th Rassia and Panos M. Pardalos, 9–20. Energy Systems. Springer Berlin Heidelberg, 2014. http://bit.ly/17MqPZW.

  • This paper examines the components and strategies involved in the creation of smart cities featuring “cohesive and open telecommunication and software architecture.”
  • In their study of smart cities, the authors examine smart and renewable energy; next-generation networks; smart buildings; smart transport; and smart government.
  • They conclude that for the development of smart cities, information and communication technology (ICT) is needed to build more horizontal collaborative structures, useful data must be analyzed in real time and people and/or machines must be able to make instant decisions related to social and urban life.

Cardone, G., L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Talasila, and R. Curtmola. “Fostering Participaction in Smart Cities: a Geo-social Crowdsensing Platform.” IEEE Communications
Magazine 51, no. 6 (2013): 112–119. http://bit.ly/17iJ0vZ.

  • This article examines “how and to what extent the power of collective although imprecise intelligence can be employed in smart cities.”
  • To tackle problems of managing the crowdsensing process, this article proposes a “crowdsensing platform with three main original technical aspects: an innovative geo-social model to profile users along different variables, such as time, location, social interaction, service usage, and human activities; a matching algorithm to autonomously choose people to involve in participActions and to quantify the performance of their sensing; and a new Android-based platform to collect sensing data from smart phones, automatically or with user help, and to deliver sensing/actuation tasks to users.”

Chen, Chien-Chu. “The Trend towards ‘Smart Cities.’” International Journal of Automation and Smart Technology. June 1, 2014. http://bit.ly/1jOOaAg.

  • In this study, Chen explores the ambitions, prevalence and outcomes of a variety of smart cities, organized into five categories:
    • Transportation-focused smart cities
    • Energy-focused smart cities
    • Building-focused smart cities
    • Water-resources-focused smart cities
    • Governance-focused smart cities
  • The study finds that the “Asia Pacific region accounts for the largest share of all smart city development plans worldwide, with 51% of the global total. Smart city development plans in the Asia Pacific region tend to be energy-focused smart city initiatives, aimed at easing the pressure on energy resources that will be caused by continuing rapid urbanization in the future.”
  • North America, on the other hand is generally more geared toward energy-focused smart city development plans. “In North America, there has been a major drive to introduce smart meters and smart electric power grids, integrating the electric power sector with information and communications technology (ICT) and replacing obsolete electric power infrastructure, so as to make cities’ electric power systems more reliable (which in turn can help to boost private-sector investment, stimulate the growth of the ‘green energy’ industry, and create more job opportunities).”
  • Looking to Taiwan as an example, Chen argues that, “Cities in different parts of the world face different problems and challenges when it comes to urban development, making it necessary to utilize technology applications from different fields to solve the unique problems that each individual city has to overcome; the emphasis here is on the development of customized solutions for smart city development.”

Domingo, A., B. Bellalta, M. Palacin, M. Oliver and E. Almirall. “Public Open Sensor Data: Revolutionizing Smart Cities.” Technology and Society Magazine, IEEE 32, No. 4. Winter 2013. http://bit.ly/1iH6ekU.

  • In this article, the authors explore the “enormous amount of information collected by sensor devices” that allows for “the automation of several real-time services to improve city management by using intelligent traffic-light patterns during rush hour, reducing water consumption in parks, or efficiently routing garbage collection trucks throughout the city.”
  • They argue that, “To achieve the goal of sharing and open data to the public, some technical expertise on the part of citizens will be required. A real environment – or platform – will be needed to achieve this goal.” They go on to introduce a variety of “technical challenges and considerations involved in building an Open Sensor Data platform,” including:
    • Scalability
    • Reliability
    • Low latency
    • Standardized formats
    • Standardized connectivity
  • The authors conclude that, despite incredible advancements in urban analytics and open sensing in recent years, “Today, we can only imagine the revolution in Open Data as an introduction to a real-time world mashup with temperature, humidity, CO2 emission, transport, tourism attractions, events, water and gas consumption, politics decisions, emergencies, etc., and all of this interacting with us to help improve the future decisions we make in our public and private lives.”

Harrison, C., B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak, and P. Williams. “Foundations for Smarter Cities.” IBM Journal of Research and Development 54, no. 4 (2010): 1–16. http://bit.ly/1iha6CR.

  • This paper describes the information technology (IT) foundation and principles for Smarter Cities.
  • The authors introduce three foundational concepts of smarter cities: instrumented, interconnected and intelligent.
  • They also describe some of the major needs of contemporary cities, and concludes that Creating the Smarter City implies capturing and accelerating flows of information both vertically and horizontally.

Hernández-Muñoz, José M., Jesús Bernat Vercher, Luis Muñoz, José A. Galache, Mirko Presser, Luis A. Hernández Gómez, and Jan Pettersson. “Smart Cities at the Forefront of the Future Internet.” In The Future Internet, edited by John Domingue, Alex Galis, Anastasius Gavras, Theodore Zahariadis, Dave Lambert, Frances Cleary, Petros Daras, et al., 447–462. Lecture Notes in Computer Science 6656. Springer Berlin Heidelberg, 2011. http://bit.ly/HhNbMX.

  • This paper explores how the “Internet of Things (IoT) and Internet of Services (IoS), can become building blocks to progress towards a unified urban-scale ICT platform transforming a Smart City into an open innovation platform.”
  • The authors examine the SmartSantander project to argue that, “the different stakeholders involved in the smart city business is so big that many non-technical constraints must be considered (users, public administrations, vendors, etc.).”
  • The authors also discuss the need for infrastructures at the, for instance, European level for realistic large-scale experimentally-driven research.

Hoon-Lee, Jung, Marguerite Gong Hancock, Mei-Chih Hu. “Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco.” Technological Forecasting and Social Change. Ocotober 3, 2013. http://bit.ly/1rzID5v.

  • In this study, the authors aim to “shed light on the process of building an effective smart city by integrating various practical perspectives with a consideration of smart city characteristics taken from the literature.”
  • They propose a conceptual framework based on case studies from Seoul and San Francisco built around the following dimensions:
    • Urban openness
    • Service innovation
    • Partnerships formation
    • Urban proactiveness
    • Smart city infrastructure integration
    • Smart city governance
  • The authors conclude with a summary of research findings featuring “8 stylized facts”:
    • Movement towards more interactive services engaging citizens;
    • Open data movement facilitates open innovation;
    • Diversifying service development: exploit or explore?
    • How to accelerate adoption: top-down public driven vs. bottom-up market driven partnerships;
    • Advanced intelligent technology supports new value-added smart city services;
    • Smart city services combined with robust incentive systems empower engagement;
    • Multiple device & network accessibility can create network effects for smart city services;
    • Centralized leadership implementing a comprehensive strategy boosts smart initiatives.

Kamel Boulos, Maged N. and Najeeb M. Al-Shorbaji. “On the Internet of Things, smart cities and the WHO Healthy Cities.” International Journal of Health Geographics 13, No. 10. 2014. http://bit.ly/Tkt9GA.

  • In this article, the authors give a “brief overview of the Internet of Things (IoT) for cities, offering examples of IoT-powered 21st century smart cities, including the experience of the Spanish city of Barcelona in implementing its own IoT-driven services to improve the quality of life of its people through measures that promote an eco-friendly, sustainable environment.”
  • The authors argue that one of the central needs for harnessing the power of the IoT and urban analytics is for cities to “involve and engage its stakeholders from a very early stage (city officials at all levels, as well as citizens), and to secure their support by raising awareness and educating them about smart city technologies, the associated benefits, and the likely challenges that will need to be overcome (such as privacy issues).”
  • They conclude that, “The Internet of Things is rapidly gaining a central place as key enabler of the smarter cities of today and the future. Such cities also stand better chances of becoming healthier cities.”

Keller, Sallie Ann, Steven E. Koonin, and Stephanie Shipp. “Big Data and City Living – What Can It Do for Us?Significance 9, no. 4 (2012): 4–7. http://bit.ly/166W3NP.

  • This article provides a short introduction to Big Data, its importance, and the ways in which it is transforming cities. After an overview of the social benefits of big data in an urban context, the article examines its challenges, such as privacy concerns and institutional barriers.
  • The authors recommend that new approaches to making data available for research are needed that do not violate the privacy of entities included in the datasets. They believe that balancing privacy and accessibility issues will require new government regulations and incentives.

Kitchin, Rob. “The Real-Time City? Big Data and Smart Urbanism.” SSRN Scholarly Paper. Rochester, NY: Social Science Research Network, July 3, 2013. http://bit.ly/1aamZj2.

  • This paper focuses on “how cities are being instrumented with digital devices and infrastructure that produce ‘big data’ which enable real-time analysis of city life, new modes of technocratic urban governance, and a re-imagining of cities.”
  • The authors provide “a number of projects that seek to produce a real-time analysis of the city and provides a critical reflection on the implications of big data and smart urbanism.”

Mostashari, A., F. Arnold, M. Maurer, and J. Wade. “Citizens as Sensors: The Cognitive City Paradigm.” In 2011 8th International Conference Expo on Emerging Technologies for a Smarter World (CEWIT), 1–5, 2011. http://bit.ly/1fYe9an.

  • This paper argues that. “implementing sensor networks are a necessary but not sufficient approach to improving urban living.”
  • The authors introduce the concept of the “Cognitive City” – a city that can not only operate more efficiently due to networked architecture, but can also learn to improve its service conditions, by planning, deciding and acting on perceived conditions.
  • Based on this conceptualization of a smart city as a cognitive city, the authors propose “an architectural process approach that allows city decision-makers and service providers to integrate cognition into urban processes.”

Oliver, M., M. Palacin, A. Domingo, and V. Valls. “Sensor Information Fueling Open Data.” In Computer Software and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th Annual, 116–121, 2012. http://bit.ly/HjV4jS.

  • This paper introduces the concept of sensor networks as a key component in the smart cities framework, and shows how real-time data provided by different city network sensors enrich Open Data portals and require a new architecture to deal with massive amounts of continuously flowing information.
  • The authors’ main conclusion is that by providing a framework to build new applications and services using public static and dynamic data that promote innovation, a real-time open sensor network data platform can have several positive effects for citizens.

Perera, Charith, Arkady Zaslavsky, Peter Christen and Dimitrios Georgakopoulos. “Sensing as a service model for smart cities supported by Internet of Things.” Transactions on Emerging Telecommunications Technologies 25, Issue 1. January 2014. http://bit.ly/1qJLDP9.

  • This paper looks into the “enormous pressure towards efficient city management” that has “triggered various Smart City initiatives by both government and private sector businesses to invest in information and communication technologies to find sustainable solutions to the growing issues.”
  • The authors explore the parallel advancement of the Internet of Things (IoT), which “envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities.”
  • The paper proposes the sensing as a service model “as a solution based on IoT infrastructure.” The sensing as a service model consists of four conceptual layers: “(i) sensors and sensor owners; (ii) sensor publishers (SPs); (iii) extended service providers (ESPs); and (iv) sensor data consumers. They go on to describe how this model would work in the areas of waste management, smart agriculture and environmental management.

Privacy, Big Data, and the Public Good: Frameworks for Engagement. Edited by Julia Lane, Victoria Stodden, Stefan Bender, and Helen Nissenbaum; Cambridge University Press, 2014. http://bit.ly/UoGRca.

  • This book focuses on the legal, practical, and statistical approaches for maximizing the use of massive datasets while minimizing information risk.
  • “Big data” is more than a straightforward change in technology.  It poses deep challenges to our traditions of notice and consent as tools for managing privacy.  Because our new tools of data science can make it all but impossible to guarantee anonymity in the future, the authors question whether it possible to truly give informed consent, when we cannot, by definition, know what the risks are from revealing personal data either for individuals or for society as a whole.
  • Based on their experience building large data collections, authors discuss some of the best practical ways to provide access while protecting confidentiality.  What have we learned about effective engineered controls?  About effective access policies?  About designing data systems that reinforce – rather than counter – access policies?  They also explore the business, legal, and technical standards necessary for a new deal on data.
  • Since the data generating process or the data collection process is not necessarily well understood for big data streams, authors discuss what statistics can tell us about how to make greatest scientific use of this data. They also explore the shortcomings of current disclosure limitation approaches and whether we can quantify the extent of privacy loss.

Schaffers, Hans, Nicos Komninos, Marc Pallot, Brigitte Trousse, Michael Nilsson, and Alvaro Oliveira. “Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation.” In The Future Internet, edited by John Domingue, Alex Galis, Anastasius Gavras, Theodore Zahariadis, Dave Lambert, Frances Cleary, Petros Daras, et al., 431–446. Lecture Notes in Computer Science 6656. Springer Berlin Heidelberg, 2011. http://bit.ly/16ytKoT.

  • This paper “explores ‘smart cities’ as environments of open and user-driven innovation for experimenting and validating Future Internet-enabled services.”
  • The authors examine several smart city projects to illustrate the central role of users in defining smart services and the importance of participation. They argue that, “Two different layers of collaboration can be distinguished. The first layer is collaboration within the innovation process. The second layer concerns collaboration at the territorial level, driven by urban and regional development policies aiming at strengthening the urban innovation systems through creating effective conditions for sustainable innovation.”

Suciu, G., A. Vulpe, S. Halunga, O. Fratu, G. Todoran, and V. Suciu. “Smart Cities Built on Resilient Cloud Computing and Secure Internet of Things.” In 2013 19th International Conference on Control Systems and Computer Science (CSCS), 513–518, 2013. http://bit.ly/16wfNgv.

  • This paper proposes “a new platform for using cloud computing capacities for provision and support of ubiquitous connectivity and real-time applications and services for smart cities’ needs.”
  • The authors present a “framework for data procured from highly distributed, heterogeneous, decentralized, real and virtual devices (sensors, actuators, smart devices) that can be automatically managed, analyzed and controlled by distributed cloud-based services.”

Townsend, Anthony. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia. W. W. Norton & Company, 2013.

  • In this book, Townsend illustrates how “cities worldwide are deploying technology to address both the timeless challenges of government and the mounting problems posed by human settlements of previously unimaginable size and complexity.”
  • He also considers “the motivations, aspirations, and shortcomings” of the many stakeholders involved in the development of smart cities, and poses a new civics to guide these efforts.
  • He argues that smart cities are not made smart by various, soon-to-be-obsolete technologies built into its infrastructure, but how citizens use these ever-changing technologies to be “human-centered, inclusive and resilient.”

To stay current on recent writings and developments on Urban Analytics, please subscribe to the GovLab Digest.
Did we miss anything? Please submit reading recommendations to biblio@thegovlab.org or in the comments below.

The Trend towards “Smart Cities”


Chien-Chu Chen in the International Journal of Automation and Smart Technology (AUSMT): “Looking back over the past century, the steady pace of development in many of the world’s cities has resulted in a situation where a high percentage of these cities are now faced with the problem of aging, decrepit urban infrastructure; a considerable number of cities are having to undertake large-scale infrastructure renewal projects. While creating new opportunities in the area of infrastructure, ongoing urbanization is also creating problems, such as excessive consumption of water, electric power and heat energy, environmental pollution, increased greenhouse gas emissions, traffic jams, and the aging of the existing residential housing stock, etc. All of these problems present a challenge to cities’ ability to achieve sustainable development. In response to these issues, the concept of the “smart city” has grown in popularity throughout the world. The aim of smart city initiatives is to make the city a vehicle for “smartification” through the integration of different industries and sectors. As initiatives of this kind move beyond basic automation into the realm of real “smartification,” the smart city concept is beginning to take concrete form….”

Smart cities are here today — and getting smarter


Computer World: “Smart cities aren’t a science fiction, far-off-in-the-future concept. They’re here today, with municipal governments already using technologies that include wireless networks, big data/analytics, mobile applications, Web portals, social media, sensors/tracking products and other tools.
These smart city efforts have lofty goals: Enhancing the quality of life for citizens, improving government processes and reducing energy consumption, among others. Indeed, cities are already seeing some tangible benefits.
But creating a smart city comes with daunting challenges, including the need to provide effective data security and privacy, and to ensure that myriad departments work in harmony.

The global urban population is expected to grow approximately 1.5% per year between 2025 and 2030, mostly in developing countries, according to the World Health Organization.

What makes a city smart? As with any buzz term, the definition varies. But in general, it refers to using information and communications technologies to deliver sustainable economic development and a higher quality of life, while engaging citizens and effectively managing natural resources.
Making cities smarter will become increasingly important. For the first time ever, the majority of the world’s population resides in a city, and this proportion continues to grow, according to the World Health Organization, the coordinating authority for health within the United Nations.
A hundred years ago, two out of every 10 people lived in an urban area, the organization says. As recently as 1990, less than 40% of the global population lived in a city — but by 2010 more than half of all people lived in an urban area. By 2050, the proportion of city dwellers is expected to rise to 70%.
As many city populations continue to grow, here’s what five U.S. cities are doing to help manage it all:

Scottsdale, Ariz.

The city of Scottsdale, Ariz., has several initiatives underway.
One is MyScottsdale, a mobile application the city deployed in the summer of 2013 that allows citizens to report cracked sidewalks, broken street lights and traffic lights, road and sewer issues, graffiti and other problems in the community….”

Crowdsourced transit app shows what time the bus will really come


Springwise: “The problem with most transport apps is that they rely on fixed data from transport company schedules and don’t truly reflect exactly what’s going on with the city’s trains and buses at any given moment. Operating like a Waze for public transport, Israel’s Ototo app crowdsources real-time information from passengers to give users the best suggestions for their commute.
The app relies on a community of ‘Riders’, who allow anonymous location data to be sent from their smartphone whenever they’re using public transport. By collating this data together, Ototo offers more realistic information about bus and train routes. While a bus may be due in five minutes, a Rider currently on that bus might be located more than five minutes away, indicating that the bus isn’t on time. Ototo can then suggest a quicker route for users. According to Fast Company, the service currently has a 12,000-strong global Riders community that powers its travel recommendations. On top of this, the app is designed in an easy-to-use infographic format that quickly and efficiently tells users where they need to be going and how long it will take. The app is free to download from the App Store, and the video below offers a demonstration:


Ototo faces competition from similar services such as New York City’s Moovit, which also details how crowded buses are.”

Are Cities Losing Control Over 'Smart' Initiatives?


Opinion by Alex Marshall in GovTech: “From the thermostats on our walls to the sensors under the asphalt of our streets, digital technology – the so-called Internet of things – is pervading and infecting every aspect of our lives.
As this technology comes to cities, whether lazy suburban ones or frenetic urban centers, it is increasingly wearing the banner of “Smart Cities.” Like those other S-words and phrases, such as smart growth and sustainability, a smart city can be just about anything to anybody, and therein lies both its utility and danger. I use the term to mean the marrying of our places with the telecommunications revolution that has took hold over the last half century, including the silicon chip, the Internet, the fiber optic line and broadband networks.
Because this transformation is so broad and deep, it’s impossible to list or even dream of all the different ways we will reshape our communities, any more than we could 100 years ago name all the ways the then-new technologies of electricity or phone service would be employed. But we can list some of the ways digital technologies are being used right now. It’s sensors in sewers, face-recognizing cameras in plazas, and individual streetlights being controlled through a dial in an office at City Hall. It’s entire new cities arising out of the ground, like Songdo in South Korea or others in the Middle East….
But as wondrous as these new technologies are, we should remember an old truth: Whether it’s the silicon chip or the entire Internet, they are just tools that deliver power and possibilities to whoever wields them. So, it’s important to know and to think about who will and should control these tools. A policeman can use street cameras with facial recognition software to look for a thief, or a dictator can use them to hunt for dissidents. So far, different cities even within the same country are answering that question differently.”

Open Government -Opportunities and Challenges for Public Governance


New volume of Public Administration and Information Technology series: “Given this global context, and taking into account both the need of academicians and practitioners, it is the intention of this book to shed light on the open government concept and, in particular:
• To provide comprehensive knowledge of recent major developments of open government around the world.
• To analyze the importance of open government efforts for public governance.
• To provide insightful analysis about those factors that are critical when designing, implementing and evaluating open government initiatives.
• To discuss how contextual factors affect open government initiatives’success or failure.
• To explore the existence of theoretical models of open government.
• To propose strategies to move forward and to address future challenges in an international context.”

Get Smart: Commission brings “open planning” movement to Europe to speed spread of smart cities


Press Release: “The European Commission is calling on those involved in creating smart cities to publish their efforts in order to help build an open planning movement from the ground up.
The challenge is being issued to city administrations, small and large companies and other organisations to go public with their ICT, energy and mobility plans, so that all parties can learn from each other and grow the smart city market. Through collaboration as well as traditional competition, the Europe will get smarter, more competitive and more sustainable.
The Commission is looking for both new commitments to “get smart” and for interested parties to share their current and past successes. Sharing these ideas will feed the European Innovation Partnership on Smart Cities and Communities (see IP/13/1159 and MEMO/13/1049) and networks such as the Smart Cities Stakeholder Platform, the Green Digital Charter, the Covenant of Mayors, and CIVITAS.
What’s in it for me?
If you are working in the smart cities field, joining the open planning movement will help you find the right partners, get better access to finance and make it easier to learn from your peers. You will help grow the marketplace you work in, and create export opportunities outside of Europe.
If you live in a city, you will benefit sooner from better traffic flows, greener buildings, and cheaper or more convenient services.
European Commission Vice President Neelie Kroes said, “For those of us living in cities, – we need to make sure they are smart cities. Nothing else makes sense. And nothing else is such a worldwide economic opportunity – so we need to get sharing!”.
Energy Commissioner Günther Oettinger said: “Cities and Communities can only get smart if mayors and governors are committed to apply innovative industrial solutions”.
In June 2014 the Commission will then seek to analyse, group and promote the best plans and initiatives.”

L’intelligence d’une ville : ses citoyens


Michel Dumais: “Tic toc! disions-nous. Bientôt la centième. Et avec la cent-unième, de nouveaux défis. Ville intelligente, disiez-vous? Je subodore le traditionnel appel de pied aux trois lettres et à une logique administrative archaïque. Et si on faisait plutôt appel à l’intelligence de ceux qui connaissent le plus leur ville, ses citoyens?

Pour régler un problème (et même à l’occasion, un «pas d’problème»), les administrations regardent du côté de ces logiciels mammouth qui, sur papier, sont censés faire tout, qui engloutissent des centaines de millions de dollars, mais qui, finalement, font les manchettes des médias parce qu’il faut y injecter encore plus d’argent. Et qui permettent aux TI d’asseoir encore plus leur contrôle sur une administration.

Bref, lorsque l’on parle de ville intelligente, plusieurs y voient le pactole. Ah! Reste que ce qui était «acceptable», hier, ne l’est plus aujourd’hui. Et que la réalisation d’une ville intelligente n’est surtout pas un défi technologique, loin de là.

LA QUESTION DU SANS-FIL
Il y a des années de cela, la simple logique eut voulu que la Ville cesse de penser «big telcos» afin de conclure rapidement une alliance avec l’organisme communautaire «Île sans fil» et ainsi favoriser le déploiement rapide sur l’île de la technologie sans fil.

Une telle alliance, un modèle dans le genre, existe.

Mais pas à Montréal. Plutôt à Québec, alors que la Ville et l’organisme communautaire «Zap Québec» travaillent main dans la main pour le plus grand bénéfice des citoyens de Québec et des touristes. Et à Montréal? On jase, on jase.

Donc, une ville intelligente. C’est une ville qui sait, à l’aide des technologies, comment harnacher ses infrastructures et les mettre au service de ses citoyens tout en réalisant des économies et en favorisant le développement durable.

C’est aussi une ville qui sait écouter et mobiliser ses citoyens, ses militants et ses entrepreneurs, tout en leur donnant des outils (comme des données utilisables) afin qu’ils puissent eux aussi créer des services destinés à leur organisation et à tous les citoyens de la ville. Sans compter que tous ces outils facilitent la prise de décisions chez les maires d’arrondissement et le comité exécutif.

Bref, une ville intelligente selon le professeur Rudolf Giffinger, c’est ça: «une économie intelligente, une mobilité intelligente, un environnement intelligent, des habitants intelligents, un mode de vie intelligent et, enfin, une administration intelligente».

J’invite le lecteur à regarder LifeApps, une extraordinaire série télé diffusée sur le site de la chaîne AlJazeera. Le sujet: des jeunes et de moins jeunes militants, bidouilleurs, qui s’impliquent et créent des services pour leur communauté.”

How Open Data Are Turned into Services?


New Paper by Muriel Foulonneau, Sébastien Martin, Slim Turki: “The Open Data movement has mainly been a data provision movement. The release of Open Data is usually motivated by (i) government transparency (citizen access to government data), (ii) the development of services by third parties for the benefit for citizens and companies (typically smart city approach), or (iii) the development of new services that stimulate the economy. The success of the Open Data movement and its return on investment should therefore be assessed among other criteria by the number and impact of the services created based on those data. In this paper, we study the development of services based on open data and means to make the data opening process more effective.”

The Emergence Of The Connected City


Glen Martin at Forbes: “If the modern city is a symbol for randomness — even chaos — the city of the near future is shaping up along opposite metaphorical lines. The urban environment is evolving rapidly, and a model is emerging that is more efficient, more functional, more — connected, in a word.
This will affect how we work, commute, and spend our leisure time. It may well influence how we relate to one another, and how we think about the world. Certainly, our lives will be augmented: better public transportation systems, quicker responses from police and fire services, more efficient energy consumption. But there could also be dystopian impacts: dwindling privacy and imperiled personal data. We could even lose some of the ferment that makes large cities such compelling places to live; chaos is stressful, but it can also be stimulating.
It will come as no surprise that converging digital technologies are driving cities toward connectedness. When conjoined, ISM band transmitters, sensors, and smart phone apps form networks that can make cities pretty darn smart — and maybe more hygienic. This latter possibility, at least, is proposed by Samrat Saha of the DCI Marketing Group in Milwaukee. Saha suggests “crowdsourcing” municipal trash pick-up via BLE modules, proximity sensors and custom mobile device apps.
“My idea is a bit tongue in cheek, but I think it shows how we can gain real efficiencies in urban settings by gathering information and relaying it via the Cloud,” Saha says. “First, you deploy sensors in garbage cans. Each can provides a rough estimate of its fill level and communicates that to a BLE 112 Module.”
As pedestrians who have downloaded custom “garbage can” apps on their BLE-capable iPhone or Android devices pass by, continues Saha, the information is collected from the module and relayed to a Cloud-hosted service for action — garbage pick-up for brimming cans, in other words. The process will also allow planners to optimize trash can placement, redeploying receptacles from areas where need is minimal to more garbage-rich environs….
Garbage can connectivity has larger implications than just, well, garbage. Brett Goldstein, the former Chief Data and Information Officer for the City of Chicago and a current lecturer at the University of Chicago, says city officials found clear patterns between damaged or missing garbage cans and rat problems.
“We found areas that showed an abnormal increase in missing or broken receptacles started getting rat outbreaks around seven days later,” Goldstein said. “That’s very valuable information. If you have sensors on enough garbage cans, you could get a temporal leading edge, allowing a response before there’s a problem. In urban planning, you want to emphasize prevention, not reaction.”
Such Cloud-based app-centric systems aren’t suited only for trash receptacles, of course. Companies such as Johnson Controls are now marketing apps for smart buildings — the base component for smart cities. (Johnson’s Metasys management system, for example, feeds data to its app-based Paoptix Platform to maximize energy efficiency in buildings.) In short, instrumented cities already are emerging. Smart nodes — including augmented buildings, utilities and public service systems — are establishing connections with one another, like axon-linked neurons.
But Goldstein, who was best known in Chicago for putting tremendous quantities of the city’s data online for public access, emphasizes instrumented cities are still in their infancy, and that their successful development will depend on how well we “parent” them.
“I hesitate to refer to ‘Big Data,’ because I think it’s a terribly overused term,” Goldstein said. “But the fact remains that we can now capture huge amounts of urban data. So, to me, the biggest challenge is transitioning the fields — merging public policy with computer science into functional networks.”…”