Use big data and crowdsourcing to detect nuclear proliferation, says DSB


FierceGovernmentIT: “A changing set of counter-nuclear proliferation problems requires a paradigm shift in monitoring that should include big data analytics and crowdsourcing, says a report from the Defense Science Board.
Much has changed since the Cold War when it comes to ensuring that nuclear weapons are subject to international controls, meaning that monitoring in support of treaties covering declared capabilities should be only one part of overall U.S. monitoring efforts, says the board in a January report (.pdf).
There are challenges related to covert operations, such as testing calibrated to fall below detection thresholds, and non-traditional technologies that present ambiguous threat signatures. Knowledge about how to make nuclear weapons is widespread and in the hands of actors who will give the United States or its allies limited or no access….
The report recommends using a slew of technologies including radiation sensors, but also exploitation of digital sources of information.
“Data gathered from the cyber domain establishes a rich and exploitable source for determining activities of individuals, groups and organizations needed to participate in either the procurement or development of a nuclear device,” it says.
Big data analytics could be used to take advantage of the proliferation of potential data sources including commercial satellite imaging, social media and other online sources.
The report notes that the proliferation of readily available commercial satellite imagery has created concerns about the introduction of more noise than genuine signal. “On balance, however, it is the judgment from the task force that more information from remote sensing systems, both commercial and dedicated national assets, is better than less information,” it says.
In fact, the ready availability of commercial imagery should be an impetus of governmental ability to find weak signals “even within the most cluttered and noisy environments.”
Crowdsourcing also holds potential, although the report again notes that nuclear proliferation analysis by non-governmental entities “will constrain the ability of the United States to keep its options open in dealing with potential violations.” The distinction between gathering information and making political judgments “will erode.”
An effort by Georgetown University students (reported in the Washington Post in 2011) to use open source data analyzing the network of tunnels used in China to hide its missile and nuclear arsenal provides a proof-of-concept on how crowdsourcing can be used to augment limited analytical capacity, the report says – despite debate on the students’ work, which concluded that China’s arsenal could be many times larger than conventionally accepted…
For more:
download the DSB report, “Assessment of Nuclear Monitoring and Verification Technologies” (.pdf)
read the WaPo article on the Georgetown University crowdsourcing effort”

Citizen roles in civic problem-solving and innovation


Satish Nambisan: “Can citizens be fruitfully engaged in solving civic problems? Recent initiatives in cities such as Boston (Citizens Connect), Chicago (Smart Chicago Collaborative), San Francisco (ImproveSF) and New York (NYC BigApps) indicate that citizens can be involved in not just identifying and reporting civic problems but in conceptualizing, designing and developing, and implementing solutions as well.
The availability of new technologies (e.g. social media) has radically lowered the cost of collaboration and the “distance” between government agencies and the citizens they serve. Further involving citizens — who are often closest to and possess unique knowledge about the problems they face — makes a lot of sense given the increasing complexity of the problems that need to be addressed.
A recent research report that I wrote highlights four distinct roles that citizens can play in civic innovation and problem-solving.
As explorer, citizens can identify and report emerging and existing civic problems. For example, Boston’s Citizen Connect initiative enables citizens to use specially built smartphone apps to report minor and major civic problems (from potholes and graffiti to water/air pollution). Closer to home, both Wisconsin and Minnesota have engaged thousands of citizen volunteers in collecting data on the quality of water in their neighborhood streams, lakes and rivers (the data thus gathered are analyzed by the state pollution control agency). Citizens also can be engaged in data analysis. The N.Y.-based Datakind initiative involves citizen volunteers using their data analysis skills to mine public data in health, education, environment, etc., to identify important civic issues and problems.
As “ideator,”citizens can conceptualize novel solutions to well-defined problems in public services. For example, the federal government’s Challenge.gov initiative employs online contests and competitions to solicit innovative ideas from citizens to solve important civic problems. Such “crowdsourcing” initiatives also have been launched at the county, city and state levels (e.g. Prize2theFuture competition in Birmingham, Ala.; ImproveSF in San Francisco).
As designer, citizens can design and/or develop implementable solutions to well-defined civic problems. For example, as part of initiatives such as NYC Big Apps and Apps for California, citizens have designed mobile apps to address specific issues such as public parking availability, public transport delays, etc. Similarly, the City Repair project in Portland, Ore., focuses on engaging citizens in co-designing and creatively transforming public places into sustainable community-oriented urban spaces.
As diffuser,citizens can play the role of a change agent and directly support the widespread adoption of civic innovations and solutions. For example, in recent years, physicians interacting with peer physicians in dedicated online communities have assisted federal and state government agencies in diffusing health technology innovations such as electronic medical record systems (EMRs).
In the private sector, companies across industries have benefited much from engaging with their customers in innovation. Evidence so far suggests that the benefits from citizen engagement in civic problem-solving are equally tangible, valuable and varied. However, the challenges associated with organizing such citizen co-creation initiatives are also many and imply the need for government agencies to adopt an intentional, well-thought-out approach….”

MIT Crowdsources the Next Great (free) IQ Test


ThePsychReport: “Raven’s Matrices have long been a gold standard for psychologists needing to measure general intelligence. But the good ones, the ones scientists like to use, are too expensive for most research projects.

Christopher Chabris, associate professor of psychology at Union College, and David Engel, postdoctoral associate at MIT Sloan School of Management, think the public can help. They recently launched a campaign to crowdsource “the next great IQ test.” The Matrix Reasoning Challenge, created through MIT’s Center for Collective Intelligence with Anita Woolley and Tom Malone,  calls on the public to design and submit matrix puzzles – 3×3 grids that asks subjects to complete a pattern by filling in a missing square.

Chabris says they aren’t trying to compete with commercially available tests used for diagnostic or clinical purposes, but rather want to provide a trustworthy and free alternative for scientists. Because these types of puzzles are nonverbal, culturally neutral, and objective, they have wide-ranging applications and are particularly useful when conducting research across various demographics. If this project is successful, a lot more scientists could do a lot more research.

A simple example of a matrix puzzle. Source: Matrix Reasoning Challenge

“Researchers typically don’t have that much money,” Chabris said. “They can’t afford pay per use tests. Sometimes they have no research budgets, or if they do, they’re not large enough for that kind of thing. Our real goal is to create something useful for researchers.”

Through the Matrix Reasoning Challenge, Chabris and Engel also hope to better understand how crowdsourcing can be used to problem-solve in social and cognitive sciences.

Social scientists already widely use crowdsourcing sites like Amazon’s Mechanical Turk to recruit participants for their studies, but the matrix project is different in that it seeks to tap into the public’s expertise to help solve scientific problems. Scientists in computer science and bioinformatics have been able to harness this expertise to yield some incredible results. Using TopCoder.com, NASA was able to find a more efficient way to deploy solar panels on the International Space Station. Harvard Medical School was able to develop better software for analyzing immune-system genes. With The Matrix Reasoning Challenge, Chabris and Engel are beginning to explore crowdsourcing’s potential in the social sciences.”

Needed: A New Generation of Game Changers to Solve Public Problems


Beth Noveck: “In order to change the way we govern, it is important to train and nurture a new generation of problem solvers who possess the multidisciplinary skills to become effective agents of change. That’s why we at the GovLab have launched The GovLab Academy with the support of the Knight Foundation.
In an effort to help people in their own communities become more effective at developing and implementing creative solutions to compelling challenges, The Gov Lab Academy is offering two new training programs:
1) An online platform with an unbundled and evolving set of topics, modules and instructors on innovations in governance, including themes such as big and open data and crowdsourcing and forthcoming topics on behavioral economics, prizes and challenges, open contracting and performance management for governance;
2) Gov 3.0: A curated and sequenced, 14-week mentoring and training program.
While the online-platform is always freely available, Gov 3.0 begins on January 29, 2014 and we invite you to to participate. Please forward this email to your networks and help us spread the word about the opportunity to participate.
Please consider applying (individuals or teams may apply), if you are:

  • an expert in communications, public policy, law, computer science, engineering, business or design who wants to expand your ability to bring about social change;

  • a public servant who wants to bring innovation to your job;

  • someone with an important idea for positive change but who lacks key skills or resources to realize the vision;

  • interested in joining a network of like-minded, purpose-driven individuals across the country; or

  • someone who is passionate about using technology to solve public problems.

The program includes live instruction and conversation every Wednesday from 5:00– 6:30 PM EST for 14 weeks starting Jan 29, 2014. You will be able to participate remotely via Google Hangout.

Gov 3.0 will allow you to apply evolving technology to the design and implementation of effective solutions to public interest challenges. It will give you an overview of the most current approaches to smarter governance and help you improve your skills in collaboration, communication, and developing and presenting innovative ideas.

Over 14 weeks, you will develop a project and a plan for its implementation, including a long and short description, a presentation deck, a persuasive video and a project blog. Last term’s projects covered such diverse issues as post-Fukushima food safety, science literacy for high schoolers and prison reform for the elderly. In every case, the goal was to identify realistic strategies for making a difference quickly.  You can read the entire Gov 3.0 syllabus here.

The program will include national experts and instructors in technology and governance both as guests and as mentors to help you design your project. Last term’s mentors included current and former officials from the White House and various state, local and international governments, academics from a variety of fields, and prominent philanthropists.

People who complete the program will have the opportunity to apply for a special fellowship to pursue their projects further.

Previously taught only on campus, we are offering Gov 3.0 in beta as an online program. This is not a MOOC. It is a mentoring-intensive coaching experience. To maximize the quality of the experience, enrollment is limited.

Please submit your application by January 22, 2014. Accepted applicants (individuals and teams) will be notified on January 24, 2014. We hope to expand the program in the future so please use the same form to let us know if you would like to be kept informed about future opportunities.”

Innovation by Competition: How Challenges and Competition Get the Most Out of the Crowd


Innocentive: “Crowdsourcing has become the 21st century’s alternative to problem solving in place of traditional employee-based strategies. It has become the modern solution to provide for needed services, content, and ideas. Crowdsourced ideas are paving the way for today’s organizations to tackle innovation challenges that confront them in today’s competitive global marketplace. To put it all in perspective, crowds used to be thought of as angry mobs. Today, crowds are more like friendly and helpful contributors. What an interesting juxtaposition, eh?
Case studies proving the effectiveness of crowdsourcing to conquer innovation challenge, particularly in the fields of science and engineering abound. Despite this fact that success stories involving crowdsourcing are plentiful, very few firms are really putting its full potential to use. Advances in ALS and AIDS research have both made huge advances thanks to crowdsourcing, just to name a couple.
Biologists at the University of Washington were able to map the structure of an AIDS related virus thanks to the collaboration involved with crowdsourcing. How did they do this?  With the help of gamers playing a game designed to help get the information the University of Washington needed. It was a solution that remained unattainable for over a decade until enough top notch scientific minds were expertly probed from around the world with effective crowdsourcing techniques.
Dr. Seward Rutkove discovered an ALS biomarker to accurately measure the progression of the disease in patients through the crowdsourcing tactics utilized in a prize contest by an organization named Prize4Life, who utilized our Challenge Driven Innovation approach to engage the crowd.
The truth is, the concept of crowdsourcing to innovate has been around for centuries. But, with the growing connectedness of the world due to sheer Internet access, the power and ability to effectively crowdsource has increased exponentially. It’s time for corporations to realize this, and stop relying on stale sources of innovation. ..”

Safety Datapalooza Shows Power of Data.gov Communities


Lisa Nelson at DigitalGov: “The White House Office of Public Engagement held the first Safety Datapalooza illustrating the power of Data.gov communities. Federal Chief Technology Officer Todd Park and Deputy Secretary of Transportation John Porcari hosted the event, which touted the data available on Safety.Data.gov and the community of innovators using it to make effective tools for consumers.
The event showcased many of the  tools that have been produced as a result of  opening this safety data including:

  • PulsePoint, from the San Ramon Fire Protection District, a lifesaving mobile app that allows CPR-trained volunteers to be notified if someone nearby is in need of emergency assistance;
  • Commute and crime maps, from Trulia, allow home buyers to choose their new residence based on two important everyday factors; and
  • Hurricane App, from the American Red Cross, to monitor storm conditions, prepare your family and home, find help, and let others know you’re safe even if the power is out;

Safety data is far from alone in generating innovative ideas and gathering a community of developers and entrepreneurs, Data.gov currently has 16 different topically diverse communities on land and sea — the Cities and Oceans communities being two such examples. Data.gov’s communities are a virtual meeting spot for interested parties across government, academia and industry to come together and put the data to use. Data.gov enables a whole set of tools to make these communities come to life: apps, blogs, challenges, forums, ranking, rating and wikis.
For a summary of the Safety Datapalooza visit Transportation’s “Fast Lane” blog.”

EPA Launches New Citizen Science Website


Press Release:The U.S. Environmental Protection Agency has revamped its Citizen Science website to provide new resources and success stories to assist the public in conducting scientific research and collecting data to better understand their local environment and address issues of concern. The website can be found at www.epa.gov/region2/citizenscience.
“Citizen Science is an increasingly important part of EPA’s commitment to using sound science and technology to protect people’s health and safeguard the environment,” said Judith A. Enck, EPA Regional Administrator. “The EPA encourages the public to use the new website as a tool in furthering their scientific investigations and developing solutions to pollution problems.”
The updated website now offers detailed information about air, water and soil monitoring, including recommended types of equipment and resources for conducting investigations. It also includes case studies and videotapes that showcase successful citizen science projects in New York and New Jersey, provides funding opportunities, quality assurance information and workshops and webinars.”

Prospects for Online Crowdsourcing of Social Science Research Tasks: A Case Study Using Amazon Mechanical Turk


New paper by Catherine E. Schmitt-Sands and Richard J. Smith: “While the internet has created new opportunities for research, managing the increased complexity of relationships and knowledge also creates challenges. Amazon.com has a Mechanical Turk service that allows people to crowdsource simple tasks for a nominal fee. The online workers may be anywhere in North America or India and range in ability. Social science researchers are only beginning to use this service. While researchers have used crowdsourcing to find research subjects or classify texts, we used Mechanical Turk to conduct a policy scan of local government websites. This article describes the process used to train and ensure quality of the policy scan. It also examines choices in the context of research ethics.”

Crowdsourcing forecasts on science and technology events and innovations


Kurzweil News: “George Mason University launched today, Jan. 10, the largest and most advanced science and technology prediction market in the world: SciCast.
The federally funded research project aims to improve the accuracy of science and technology forecasts. George Mason research assistant professor Charles Twardy is the principal investigator of the project.
SciCast crowdsources forecasts on science and technology events and innovations from aerospace to zoology.
For example, will Amazon use drones for commercial package delivery by the end of 2017? Today, SciCast estimates the chance at slightly more than 50 percent. If you think that is too low, you can estimate a higher chance. SciCast will use your estimate to adjust the combined forecast.
Forecasters can update their forecasts at any time; in the above example, perhaps after the Federal Aviation Administration (FAA) releases its new guidelines for drones. The continually updated and reshaped information helps both the public and private sectors better monitor developments in a variety of industries. SciCast is a real-time indicator of what participants think is going to happen in the future.
“Combinatorial” prediction market better than simple average


How SciCast works (Credit: George Mason University)
The idea is that collective wisdom from diverse, informed opinions can provide more accurate predictions than individual forecasters, a notion borne out by other crowdsourcing projects. Simply taking an average is almost always better than going with the “best” expert. But in a two-year test on geopolitical questions, the SciCast method did 40 percent better than the simple average.
SciCast uses the first general “combinatorial” prediction market. In a prediction market, forecasters spend points to adjust the group forecast. Significant changes “cost” more — but “pay” more if they turn out to be right. So better forecasters gain more points and therefore more influence, improving the accuracy of the system.
In a combinatorial market like SciCast, forecasts can influence each other. For example, forecasters might have linked cherry production to honeybee populations. Then, if forecasters increase the estimated percentage of honeybee colonies lost this winter, SciCast automatically reduces the estimated 2014 cherry production. This connectivity among questions makes SciCast more sophisticated than other prediction markets.
SciCast topics include agriculture, biology and medicine, chemistry, computational sciences, energy, engineered technologies, global change, information systems, mathematics, physics, science and technology business, social sciences, space sciences and transportation….

Crowdsourcing forecasts on science and technology events and innovations

George Mason University’s just-launched SciCast is largest and most advanced science and technology prediction market in the world
January 10, 2014


Example of SciCast crowdsourced forecast (credit: George Mason University)
George Mason University launched today, Jan. 10, the largest and most advanced science and technology prediction market in the world: SciCast.
The federally funded research project aims to improve the accuracy of science and technology forecasts. George Mason research assistant professor Charles Twardy is the principal investigator of the project.
SciCast crowdsources forecasts on science and technology events and innovations from aerospace to zoology.
For example, will Amazon use drones for commercial package delivery by the end of 2017? Today, SciCast estimates the chance at slightly more than 50 percent. If you think that is too low, you can estimate a higher chance. SciCast will use your estimate to adjust the combined forecast.
Forecasters can update their forecasts at any time; in the above example, perhaps after the Federal Aviation Administration (FAA) releases its new guidelines for drones. The continually updated and reshaped information helps both the public and private sectors better monitor developments in a variety of industries. SciCast is a real-time indicator of what participants think is going to happen in the future.
“Combinatorial” prediction market better than simple average


How SciCast works (Credit: George Mason University)
The idea is that collective wisdom from diverse, informed opinions can provide more accurate predictions than individual forecasters, a notion borne out by other crowdsourcing projects. Simply taking an average is almost always better than going with the “best” expert. But in a two-year test on geopolitical questions, the SciCast method did 40 percent better than the simple average.
SciCast uses the first general “combinatorial” prediction market. In a prediction market, forecasters spend points to adjust the group forecast. Significant changes “cost” more — but “pay” more if they turn out to be right. So better forecasters gain more points and therefore more influence, improving the accuracy of the system.
In a combinatorial market like SciCast, forecasts can influence each other. For example, forecasters might have linked cherry production to honeybee populations. Then, if forecasters increase the estimated percentage of honeybee colonies lost this winter, SciCast automatically reduces the estimated 2014 cherry production. This connectivity among questions makes SciCast more sophisticated than other prediction markets.
SciCast topics include agriculture, biology and medicine, chemistry, computational sciences, energy, engineered technologies, global change, information systems, mathematics, physics, science and technology business, social sciences, space sciences and transportation.
Seeking futurists to improve forecasts, pose questions


(Credit: George Mason University)
“With so many science and technology questions, there are many niches,” says Twardy, a researcher in the Center of Excellence in Command, Control, Communications, Computing and Intelligence (C4I), based in Mason’s Volgenau School of Engineering.
“We seek scientists, statisticians, engineers, entrepreneurs, policymakers, technical traders, and futurists of all stripes to improve our forecasts, link questions together and pose new questions.”
Forecasters discuss the questions, and that discussion can lead to new, related questions. For example, someone asked,Will Amazon deliver its first package using an unmanned aerial vehicle by Dec. 31, 2017?
An early forecaster suggested that this technology is likely to first be used in a mid-sized town with fewer obstructions or local regulatory issues. Another replied that Amazon is more likely to use robots to deliver packages within a short radius of a conventional delivery vehicle. A third offered information about an FAA report related to the subject.
Any forecaster could then write a question about upcoming FAA rulings, and link that question to the Amazon drones question. Forecasters could then adjust the strength of the link.
“George Mason University has succeeded in launching the world’s largest forecasting tournament for science and technology,” says Jason Matheny, program manager of Forecasting Science and Technology at the Intelligence Advanced Research Projects Activity, based in Washington, D.C. “SciCast can help the public and private sectors to better understand a range of scientific and technological trends.”
Collaborative but Competitive
More than 1,000 experts and enthusiasts from science and tech-related associations, universities and interest groups preregistered to participate in SciCast. The group is collaborative in spirit but also competitive. Participants are rewarded for accurate predictions by moving up on the site leaderboard, receiving more points to spend influencing subsequent prognostications. Participants can (and should) continually update their predictions as new information is presented.
SciCast has partnered with the American Association for the Advancement of Science, the Institute of Electrical and Electronics Engineers, and multiple other science and technology professional societies.
Mason members of the SciCast project team include Twardy; Kathryn Laskey, associate director for the C4I and a professor in the Department of Systems Engineering and Operations Research; associate professor of economics Robin Hanson; C4I research professor Tod Levitt; and C4I research assistant professors Anamaria Berea, Kenneth Olson and Wei Sun.
To register for SciCast, visit www.SciCast.org, or for more information, e-mail support@scicast.org. SciCast is open to anyone age 18 or older.”