Policy paper by the German Council for Scientific Information Infrastructures: “…provides an overview and a comparative in-depth analysis of the emerging research (and research related) data infrastructures NFDI, EOSC, Gaia-X and the European Data Spaces. In addition, the Council makes recommendations for their future development and coordination. The RfII notes that access to genuine high-quality research data and related core services is a matter of basic public supply and strongly advises to achieve coherence between the various initiatives and approaches…(More)”.
Unlocking Green Deal Data: Innovative Approaches for Data Governance and Sharing in Europe
JRC Report: “Drawing upon the ambitious policy and legal framework outlined in the Europe Strategy for Data (2020) and the establishment of common European data spaces, this Science for Policy report explores innovative approaches for unlocking relevant data to achieve the objectives of the European Green Deal.
The report focuses on the governance and sharing of Green Deal data, analysing a variety of topics related to the implementation of new regulatory instruments, namely the Data Governance Act and the Data Act, as well as the roles of various actors in the data ecosystem. It provides an overview of the current incentives and disincentives for data sharing and explores the existing landscape of Data Intermediaries and Data Altruism Organizations. Additionally, it offers insights from a private sector perspective and outlines key data governance and sharing practices concerning Citizen-Generated Data (CGD).
The main conclusions build upon the concept of “Systemic Data Justice,” which emphasizes equity, accountability, and fair representation to foster stronger connections between the supply and demand of data for a more effective and sustainable data economy. Five policy recommendations outline a set of main implications and actionable points for the revision of the INSPIRE Directive (2007) within the context of the common European Green Deal data space, and toward a more sustainable and fair data ecosystem. However, the relevance of these recommendations spills over Green Deal data only, as they outline key elements to ensure that any data ecosystem is both just and impact-oriented…(More)”.
Enabling Digital Innovation in Government
OECD Report: “…presents the OECD’s definition of GovTech (Chapter 2) and sets out the GovTech Policy Framework (Chapter 3). The framework is designed to guide governments on how to establish the conditions for successful, sustainable, and effective GovTech.
The framework consists of two parts: the GovTech Building Blocks and the GovTech Enablers. The building blocks (Chapter 3) represent the foundations at the micro-level needed to establish impactful GovTech practices within public sectors by introducing more agile practices, mitigating risks, and building meaningful collaboration with the GovTech ecosystem. These building blocks include:
- Mature digital government infrastructure: including the necessary technology, infrastructure, tools, and data governance to enable both GovTech collaborations and the digital solutions they develop.
- Capacities for collaboration and experimentation: within the public sector, including the digital skills and multidisciplinary teams; agile processes, tools, and methodologies; and a culture that encourages experimentation and accepts failure.
- Resources and implementation support: considering how to make funding available, how to evolve procurement approaches, and how to scale successful pilots across organisations and internationally.
- Availability and maturity of GovTech partners: including acceleration programmes to support start-ups growth by facilitating access to capital, the scaling up of solutions, and minimising barriers to access procurement opportunities.
At the macro-level, the enablers (Chapter 4) instead create an environment that fosters the development of GovTech and facilitates good practices. This is done at the:
- Strategic layer: where governments could use GovTech strategies and champions in senior leadership positions to mobilise support and set a clear direction for GovTech.
- Institutional layer: where governments could seek collaboration and knowledge-sharing across institutions at the national, regional, or policy levels.
- Network layer: where both governments and GovTech actors should seek to mobilise the network collectively to strengthen the GovTech practice and garner broader support from communities…(More)”
Rediscovering the Pleasures of Pluralism: The Potential of Digitally Mediated Civic Participation
Essay by Lily L. Tsai and Alex Pentland: “Human society developed when most collective decision-making was limited to small, geographically concentrated groups such as tribes or extended family groups. Discussions about community issues could take place among small numbers of people with similar concerns. As coordination across larger distances evolved, the costs of travel required representatives from each clan or smaller group to participate in deliberations and decision-making involving multiple local communities. Divergence in the interests of representatives and their constituents opened up opportunities for corruption and elite capture.
Technologies now enable very large numbers of people to communicate, coordinate, and make collective decisions on the same platform. We have new opportunities for digitally enabled civic participation and direct democracy that scale for both the smallest and largest groups of people. Quantitative experiments, sometimes including tens of millions of individuals, have examined inclusiveness and efficiency in decision-making via digital networks. Their findings suggest that large networks of nonexperts can make practical, productive decisions and engage in collective action under certain (1) conditions. (2) These conditions include shared knowledge among individuals and communities with similar concerns, and information about their recent actions and outcomes…(More)”
Exploring the Intersections of Open Data and Generative AI: Recent Additions to the Observatory
Blog by Roshni Singh, Hannah Chafetz, Andrew Zahuranec, Stefaan Verhulst: “The Open Data Policy Lab’s Observatory of Examples of How Open Data and Generative AI Intersect provides real-world use cases of where open data from official sources intersects with generative artificial intelligence (AI), building from the learnings from our report, “A Fourth Wave of Open Data? Exploring the Spectrum of Scenarios for Open Data and Generative AI.”
The Observatory includes over 80 examples from several domains and geographies–ranging from supporting administrative work within the legal department of the Government of France to assisting researchers across the African continent in navigating cross-border data sharing laws. The examples include generative AI chatbots to improve access to services, conversational tools to help analyze data, datasets to improve the quality of the AI output, and more. A key feature of the Observatory is its categorization across our Spectrum of Scenarios framework, shown below. Through this effort, we aim to bring together the work already being done and identify ways to use generative AI for the public good.
This Observatory is an attempt to grapple with the work currently being done to apply generative AI in conjunction with official open data. It does not make a value judgment on their efficacy or practices. Many of these examples have ethical implications, which merit further attention and study.
From September through October, we added to the Observatory:
- Bayaan Platform: A conversational tool by the Statistics Centre Abu Dhabi that provides decision makers with data analytics and visualization support.
- Berufsinfomat: A generative AI tool for career coaching in Austria.
- ChatTCU: A chatbot for Brazil’s Federal Court of Accounts.
- City of Helsinki’s AI Register: An initiative aimed at leveraging open city data to enhance civic services and facilitate better engagement with residents.
- Climate Q&A: A generative AI chatbot that provides information about climate change based on scientific reports.
- DataLaw.Bot: A generative AI tool that disseminates data sharing regulations with researchers across several African countries…(More)”.
Unlocking data for climate action requires trusted marketplaces
Report by Digital Impact Alliance: “In 2024, the northern hemisphere recorded the hottest summer overall, the hottest day, and the hottest ever month of August. That same month – August 2024 – this warming fueled droughts in Italy and intensified typhoons that devastated parts of the Philippines, Taiwan, and China. The following month, new research calculated that warming is costing the global economy billions of dollars: an increase in extreme heat and severe drought costs about 0.2% of a country’s GDP.
These are only the latest stories and statistics that illustrate the growing costs of climate change – data points that have emerged in the short time since we published our second Spotlight on unlocking climate data with open transaction networks.
This third paper in the series continues the work of the Joint Learning Network on Unlocking Data for Climate Action (Climate Data JLN). This multi-disciplinary network identified multiple promising models to explore in the context of unlocking data for climate action. This Spotlight paper examines the third of these models: data spaces. Through examination of data spaces in action, the paper analyzes the key elements that render them more or less applicable to specific climate-related data sets. Data spaces are relatively new and mostly conceptual, with only a handful of implementations in process and concentrated in a few geographic areas. While this model requires extensive up-front work to agree upon governance and technical standards, the result is an approach that overcomes trust and financing issues by maintaining data sovereignty and creating a marketplace for data exchange…(More)”.
Local Systems
Position Paper by USAID: “…describes the key approaches USAID will use to translate systems thinking into systems practice. It focuses on ways USAID can better understand and engage local systems to support them in producing more sustainable results. Systems thinking is a mindset and set of tools that we use to understand how systems behave and produce certain results or outcomes. Systems practice is the application of systems thinking to better understand challenges and strengthen the capacity of local systems to unlock locally led, sustained progress. The shift from systems thinking to systems practice is driven by a desire to integrate systems practice throughout the Program Cycle and increase our capacity to actively and adaptively manage programming in ways that recognize complexity and help make our programs more effective and sustainable.
These approaches will be utilized alongside and within the context of USAID’s policies and guidance, including technical guidance for specific sectors, as well as evidence and lessons learned from partners around the world. Systems thinking is a long-standing discipline that can serve as a powerful tool for understanding and working with local systems. It has been a consistent component of USAID’s decades-long commitment to locally led development and humanitarian assistance. USAID uses systems thinking to better understand the complex and interrelated challenges we confront – from climate change to migration to governance – and the perspectives of diverse stakeholders on these issues. When we understand challenges as complex systems – where outcomes emerge from the interactions and relationships between actors and elements in that system – we can leverage and help strengthen the local capacities and relationships that will ultimately drive sustainable progress…(More)”.
Science and technology’s contribution to the UK economy
UK House of Lords Primer: “It is difficult to accurately pinpoint the economic contribution of science and technology to the UK economy. This is because of the way sectors are divided up and reported in financial statistics.
For example, in September 2024 the Office for National Statistics (ONS) reported the following gross value added (GVA) figures by industry/sector for 2023:
- £71bn for IT and other information service activities
- £20.6bn for scientific research and development
This would amount to £91.6bn, forming approximately 3.9% of the total UK GVA of £2,368.7bn for 2023. However, a number of other sectors could also be included in these figures, for example:
- the manufacture of computer, certain machinery and electrical components (valued at £38bn in 2023)
- telecommunications (valued at £34.5bn)
If these two sectors were included too, GVA across all four sectors would total £164.1bn, approximately 6.9% of the UK’s 2023 GVA. However, this would likely still exclude relevant contributions that happen to fall within the definitions of different industries. For example, the manufacture of spacecraft and related machinery falls within the same sector as the manufacture of aircraft in the ONS’s data (this sector was valued at £10.8bn for 2023).
Alternatively, others have made estimates of the economic contribution of more specific sectors connected to science and technology. For example:
- Oxford Economics, an economic advisory firm, has estimated that, in 2023, the life sciences sector contributed over £13bn to the UK economy and employed one in every 121 employed people
- the government has estimated the value of the digital sector (comprising information technology and digital content and media) at £158.3bn for 2022
- a 2023 government report estimated the value of the UK’s artificial intelligence (AI) sector at around £3.7bn (in terms of GVA) and that the sector employed around 50,040 people
- the Energy and Climate Intelligence Unit, a non-profit organisation, reported estimates that the GVA of the UK’s net zero economy (encompassing sectors such as renewables, carbon capture, green and certain manufacturing) was £74bn in 2022/23 and that it supported approximately 765,700 full-time equivalent (FTE) jobs…(More)”.
Navigating Generative AI in Government
Report by the IBM Center for The Business of Government: “Generative AI refers to algorithms that can create realistic content such as images, text, music, and videos by learning from existing data patterns. Generative AI does more than just create content, it also serves as a user-friendly interface for other AI tools, making complex results easy to understand and use. Generative AI transforms analysis and prediction results into personalized formats, improving explainability by converting complicated data into understandable content. As Generative AI evolves, it plays an active role in collaborative processes, functioning as a vital collaborator by offering strengths that complement human abilities.
Generative AI has the potential to revolutionize government agencies by enhancing efficiency, improving decision making, and delivering better services to citizens, while maintaining agility and scalability. However, in order to implement generative AI solutions effectively, government agencies must address key questions—such as what problems AI can solve, data governance frameworks, and scaling strategies, to ensure a thoughtful and effective AI strategy. By exploring generic use cases, agencies can better understand the transformative potential of generative AI and align it with their unique needs and ethical considerations.
This report, which distills perspectives from two expert roundtable of leaders in Australia, presents 11 strategic pathways for integrating generative AI in government. The strategies include ensuring coherent and ethical AI implementation, developing adaptive AI governance models, investing in a robust data infrastructure, and providing comprehensive training for employees. Encouraging innovation and prioritizing public engagement and transparency are also essential to harnessing the full potential of AI…(More)”
What’s the Value of Privacy?
Brief by New America: “On a day-to-day basis, people make decisions about what information to share and what information to keep to themselves—guided by an inner privacy compass. Privacy is a concept that is both evocative and broad, often possessing different meanings for different people. The term eludes a common, static definition, though it is now inextricably linked to technology and a growing sense that individuals do not have control over their personal information. If privacy still, at its core, encompasses “the right to be left alone,” then that right is increasingly difficult to exercise in the modern era.
The inability to meaningfully choose privacy is not an accident—in fact, it’s often by design. Society runs on data. Whether it is data about people’s personal attributes, preferences, or actions, all that data can be linked together, becoming greater than the sum of its parts. If data is now the world’s most valuable resource, then the companies that are making record profits off that data are highly incentivized to keep accessing it and obfuscating the externalities of data sharing. In brief, data use and privacy are “economically significant.”
And yet, despite the pervasive nature of data collection, much of the public lacks a nuanced understanding of the true costs and benefits of sharing their data—for themselves and for society as a whole. People who have made billions by collecting and re-selling individual user data will continue to claim that it has little value. And yet, there are legitimate reasons why data should be shared—without a clear understanding of an issue, it is impossible to address it…(More)”.