Call to make tech firms report data centre energy use as AI booms


Article by Sandra Laville: “Tech companies should be required by law to report the energy and water consumption for their data centres, as the boom in AI risks causing irreparable damage to the environment, experts have said.

AI is growing at a rate unparalleled by other energy systems, bringing heightened environmental risk, a report by the National Engineering Policy Centre (NEPC) said.

The report calls for the UK government to make tech companies submit mandatory reports on their energy and water consumption and carbon emissions in order to set conditions in which data centres are designed to use fewer vital resources…(More)”.

Public Policy Evaluation


​Implementation Toolkit by the OECD: “…offers practical guidance for government officials and evaluators seeking to improve their evaluation capacities and systems, by enabling a deeper understanding of their strengths and weaknesses and learning from OECD member country experiences and trends. The toolkit supports the practical implementation of the principles contained in the 2022 OECD Recommendation on Public Policy Evaluation, which is the first international standard aimed at driving the establishment of robust institutions and practices that promote the use of public policy evaluations. Together, the Recommendation and this accompanying toolkit seek to help governments build a culture of continuous learning and evidence-informed policymaking, potentially leading to more impactful policies and greater trust in government action.​..(More)”.

The new politics of AI


Report by the IPPR: AI is fundamentally different from other technologies – it is set to unleash a vast number of highly sophisticated ‘artificial agents’ into the economy. AI systems that can take actions and make decisions are not just tools – they are actors. This can be a good thing. But it requires a novel type of policymaking and politics. Merely accelerating AI deployment and hoping it will deliver public value will likely be insufficient.

In this briefing, we outline how the summit constitutes the first event of a new era of AI policymaking that links AI policy to delivering public value. We argue that AI needs to be directed towards societies’ goals, via ‘mission-based policies’….(More)”.

Enhancing Access to and Sharing of Data in the Age of Artificial Intelligence



OECD Report: “Artificial intelligence (AI) is transforming economies and societies, but its full potential is hindered by poor access to quality data and models. Based on comprehensive country examples, the OECD report “Enhancing Access to and Sharing of Data in the Age of AI” highlights how governments can enhance access to and sharing of data and certain AI models, while ensuring privacy and other rights and interests such as intellectual property rights. It highlights the OECD Recommendation on Enhancing Access to and Sharing of Data, which provides principles to balance openness while ensuring effective legal, technical and organisational safeguards. This policy brief highlights the key findings of the report and their relevance for stakeholders seeking to promote trustworthy AI through better policies for data and AI models that drive trust, investment, innovation, and well-being….(More)”

Artificial Intelligence for Participation


Policy Brief by the Brazil Centre of the University of Münster: “…provides an overview of current and potential applications of artificial intelligence (AI) technologies in the context of political participation and democratic governance processes in cities. Aimed primarily at public managers, the document also highlights critical issues to consider in the implementation of these technologies, and proposes an agenda for debate on the new state capabilities they require…(More)”.

AI Commons: nourishing alternatives to Big Tech monoculture


Report by Joana Varon, Sasha Costanza-Chock, Mariana Tamari, Berhan Taye, and Vanessa Koetz: “‘Artificial Intelligence’ (AI) has become a buzzword all around the globe, with tech companies, research institutions, and governments all vying to define and shape its future. How can we escape the current context of AI development where certain power forces are pushing for models that, ultimately, automate inequalities and threaten socio-enviromental diversities? What if we could redefine AI? What if we could shift its production from a capitalist model to a more disruptive, inclusive, and decentralized one? Can we imagine and foster an AI Commons ecosystem that challenges the current dominant neoliberal logic of an AI arms race? An ecosystem encompassing researchers, developers, and activists who are thinking about AI from decolonial, transfeminist, antiracist, indigenous, decentralized, post-capitalist and/or socio-environmental justice perspectives?

This fieldscan research, commissioned by One Project and conducted by Coding Rights, aims to understand the (possibly) emerging “AI Common” ecosystem. Focused on key entities (organizations, cooperatives and collectives, networks, companies, projects, and others) from Africa, the Americas, and Europe advancing alternative possible AI futures, the authors identify 234 entities that are advancing the AI Commons ecosystem. The report finds powerful communities of practice, groups, and organizations producing nuanced criticism of the Big Tech-driven AI development ecosystem and, most importantly, imagining, developing, and, at times, deploying an alternative AI technology that’s informed and guided by the principles of decoloniality, feminism, antiracist, and post-capitalist AI systems…(More)”.

Establish data collaboratives to foster meaningful public involvement


Article by Gwen Ottinger: “…Data Collaboratives would move public participation and community engagement upstream in the policy process by creating opportunities for community members to contribute their lived experience to the assessment of data and the framing of policy problems. This would in turn foster two-way communication and trusting relationships between government and the public. Data Collaboratives would also help ensure that data and their uses in federal government are equitable, by inviting a broader range of perspectives on how data analysis can promote equity and where relevant data are missing. Finally, Data Collaboratives would be one vehicle for enabling individuals to participate in science, technology, engineering, math, and medicine activities throughout their lives, increasing the quality of American science and the competitiveness of American industry…(More)”.

Local Government: Artificial intelligence use cases


Repository by the (UK) Local Government Association: “Building on the findings of our recent AI survey, which highlighted the need for practical examples, this bank showcases the diverse ways local authorities are leveraging AI. 

Within this collection, you’ll discover a spectrum of AI adoption, ranging from utilising AI assistants to streamline back-office tasks to pioneering the implementation of bespoke Large Language Models (LLMs). These real-world use cases exemplify the innovative spirit driving advancements in local government service delivery. 

Whether your council is at the outset of its AI exploration or seeking to expand its existing capabilities, this bank offers a wealth of valuable insights and best practices to support your organisation’s AI journey…(More)”.

Developing a public-interest training commons of books


Article by Authors Alliance: “…is pleased to announce a new project, supported by the Mellon Foundation, to develop an actionable plan for a public-interest book training commons for artificial intelligence. Northeastern University Library will be supporting this project and helping to coordinate its progress.

Access to books will play an essential role in how artificial intelligence develops. AI’s Large Language Models (LLMs) have a voracious appetite for text, and there are good reasons to think that these data sets should include books and lots of them. Over the last 500 years, human authors have written over 129 million books. These volumes, preserved for future generations in some of our most treasured research libraries, are perhaps the best and most sophisticated reflection of all human thinking. Their high editorial quality, breadth, and diversity of content, as well as the unique way they employ long-form narratives to communicate sophisticated and nuanced arguments and ideas make them ideal training data sources for AI.

These collections and the text embedded in them should be made available under ethical and fair rules as the raw material that will enable the computationally intense analysis needed to inform new AI models, algorithms, and applications imagined by a wide range of organizations and individuals for the benefit of humanity…(More)”

Path to Public Innovation Playbook


Playbook by Bloomberg Center for Public Innovation: “…a practical, example-rich guide for city leaders at any stage of their innovation journey. Crucially, the playbook offers learnings from the past 10-plus years of government innovation that can help municipalities take existing efforts to the next level…

Innovation has always started with defining major challenges in cooperation with residents. But in recent years, cities have increasingly tried to go further by working to unite every local actor around transformational changes that will be felt for generations. What they’re finding is that by establishing a North Star for action—the playbook calls them Ambitious Impactful Missions (AIMs)—they’re achieving better outcomes. And the playbook shows them how to find that North Star.

“If you limit yourself to thinking about a single priority, that can lead to a focus on just the things right in front of you,” explains Amanda Daflos, executive director of the Bloomberg Center for Public Innovation and the former Chief Innovation Officer and director of the i-team in Los Angeles. In contrast, she says, a more ambitious, mission-style approach recognizes that “the whole city has to work on this.”

For instance, in Reykjavik, Iceland, local leaders are determined to improve outcomes for children. But rather than limiting the scope or scale of their efforts to one slice of that pursuit, they thought bigger, tapping a wide array of actors from the Department of Education to the Department of Welfare to pursue a vision called “A Better City for Children.” At its core, this effort is about delivering a massive array of new and improved services for kids and ensuring those services are not interrupted at any point in a young person’s life. Specific interventions range from at-home student counseling, to courses on improving communication within households, to strategy sessions for parents whose children have anxiety. 

More noteworthy than the individual solutions is that this ambitious effort has shown signs of activating the kind of broad coalition needed to make long-term change. In fact, the larger vision started under then-Mayor Dagur Eggertsson, has been maintained by his successor, Mayor Ein­ar Þor­steinsson, and has recently shown signs of expansion. The playbook provides mayors with a framework for developing their own blueprints for big change…(More)”.