Balancing information governance obligations when accessing social care data for collaborative research


Paper by Malkiat Thiarai, Sarunkorn Chotvijit and Stephen Jarvis: “There is significant national interest in tackling issues surrounding the needs of vulnerable children and adults. This paper aims to argue that much value can be gained from the application of new data-analytic approaches to assist with the care provided to vulnerable children. This paper highlights the ethical and information governance issues raised in the development of a research project that sought to access and analyse children’s social care data.


The paper documents the process involved in identifying, accessing and using data held in Birmingham City Council’s social care system for collaborative research with a partner organisation. This includes identifying the data, its structure and format; understanding the Data Protection Act 1998 and 2018 (DPA) exemptions that are relevant to ensure that legal obligations are met; data security and access management; the ethical and governance approval process.


The findings will include approaches to understanding the data, its structure and accessibility tasks involved in addressing ethical and legal obligations and requirements of the ethical and governance processes….(More)”.

Applying behavioral insights to improve postsecondary education outcomes


Brookings: “Policymakers under President Obama implemented behaviorally-informed policies to improve college access, completion, and affordability. Given the complexity of the college application process, many of these policies aimed to simplify college and financial aid application processes and reduce informational barriers that students face when evaluating college options. Katharine Meyer and Kelly Ochs Rosinger summarize empirical evidence on these policies and conclude that behaviorally-informed policies play an important role, especially as supplements to (rather than replacements for) broader structural changes. For example, recent changes in the FAFSA filing timeline provided students with more time to complete the form. But this large shift may be more effective in changing behavior when accompanied by informational campaigns and nudges that improve students’ understanding of the new system. Governments and colleges can leverage behavioral science to increase awareness of student support services if more structural policy changes occur to provide the services in the first place….(More)”.

Collective Emotions and Protest Vote


Paper by Carlo Altomonte, Gloria Gennaro and Francesco Passarelli: “We leverage on important findings in social psychology to build a behavioral theory of protest vote. An individual develops a feeling of resentment if she loses income over time while richer people do not, or if she does not gain as others do, i.e. when her relative deprivation increases. In line with the Intergroup Emotions Theory, this feeling is amplified if the individual identifies with a community experiencing the same feeling. Such a negative collective emotion, which we define as aggrievement, fuels the desire to take revenge against traditional parties and the richer elite, a common trait of populist rhetoric.

The theory predicts higher support for the protest party when individuals identify more strongly with their local community and when a higher share of community members are aggrieved. We test this theory using longitudinal data on British households and exploiting the emergence of the UK Independence Party (UKIP) in Great Britain in the 2010 and 2015 national elections. Empirical findings robustly support theoretical predictions. The psychological mechanism postulated by our theory survives the controls for alternative non-behavioral mechanisms (e.g. information sharing or political activism in local communities)….(More)”.

Are Requirements to Deposit Data in Research Repositories Compatible With the European Union’s General Data Protection Regulation?


Paper by Deborah Mascalzoni et al: “To reproduce study findings and facilitate new discoveries, many funding bodies, publishers, and professional communities are encouraging—and increasingly requiring—investigators to deposit their data, including individual-level health information, in research repositories. For example, in some cases the National Institutes of Health (NIH) and editors of some Springer Nature journals require investigators to deposit individual-level health data via a publicly accessible repository (12). However, this requirement may conflict with the core privacy principles of European Union (EU) General Data Protection Regulation 2016/679 (GDPR), which focuses on the rights of individuals as well as researchers’ obligations regarding transparency and accountability.

The GDPR establishes legally binding rules for processing personal data in the EU, as well as outside the EU in some cases. Researchers in the EU, and often their global collaborators, must comply with the regulation. Health and genetic data are considered special categories of personal data and are subject to relatively stringent rules for processing….(More)”.

Using Data Sharing Agreements as Tools of Indigenous Data Governance: Current Uses and Future Options


Paper by Martinez, A. and Rainie, S. C.: “Indigenous communities and scholars have been influencing a shift in participation and inclusion in academic and agency research over the past two decades. As a response, Indigenous peoples are increasingly asking research questions and developing their own studies rooted in their cultural values. They use the study results to rebuild their communities and to protect their lands. This process of Indigenous-driven research has led to partnering with academic institutions, establishing research review boards, and entering into data sharing agreements to protect environmental data, community information, and local and traditional knowledges.

Data sharing agreements provide insight into how Indigenous nations are addressing the key areas of data collection, ownership, application, storage, and the potential for data reuse in the future. By understanding this mainstream data governance mechanism, how they have been applied, and how they have been used in the past, we aim to describe how Indigenous nations and communities negotiate data protection and control with researchers.

The project described here reviewed publicly available data sharing agreements that focus on research with Indigenous nations and communities in the United States. We utilized qualitative analysis methods to identify specific areas of focus in the data sharing agreements, whether or not traditional or cultural values were included in the language of the data sharing agreements, and how the agreements defined data. The results detail how Indigenous peoples currently use data sharing agreements and potential areas of expansion for language to include in data sharing agreements as Indigenous peoples address the research needs of their communities and the protection of community and cultural data….(More)”.

Governance of artificial intelligence and personal health information


Jenifer Sunrise Winter in Digital Policy, Regulation and Governance: “This paper aims to assess the increasing challenges to governing the personal health information (PHI) essential for advancing artificial intelligence (AI) machine learning innovations in health care. Risks to privacy and justice/equity are discussed, along with potential solutions….

This paper argues that these characteristics of machine learning will overwhelm existing data governance approaches such as privacy regulation and informed consent. Enhanced governance techniques and tools will be required to help preserve the autonomy and rights of individuals to control their PHI. Debate among all stakeholders and informed critique of how, and for whom, PHI-fueled health AI are developed and deployed are needed to channel these innovations in societally beneficial directions.

Health data may be used to address pressing societal concerns, such as operational and system-level improvement, and innovations such as personalized medicine. This paper informs work seeking to harness these resources for societal good amidst many competing value claims and substantial risks for privacy and security….(More).

The Role of Big Data Analytics in Predicting Suicide


Chapter by Ronald C. Kessler et al: “…reviews the long history of using electronic medical records and other types of big data to predict suicide. Although a number of the most recent of these studies used machine learning (ML) methods, these studies were all suboptimal both in the features used as predictors and in the analytic approaches used to develop the prediction models. We review these limitations and describe opportunities for making improvements in future applications.

We also review the controversy among clinical experts about using structured suicide risk assessment tools (be they based on ML or older prediction methods) versus in-depth clinical evaluations of needs for treatment planning. Rather than seeing them as competitors, we propose integrating these different approaches to capitalize on their complementary strengths. We also emphasize the distinction between two types of ML analyses: those aimed at predicting which patients are at highest suicide risk, and those aimed at predicting the treatment options that will be best for individual patients. We explain why both are needed to optimize the value of big data ML methods in addressing the suicide problem….(More)”.

See also How Search Engine Data Enhance the Understanding of Determinants of Suicide in India and Inform Prevention: Observational Study.

Co-Creating e-Government Services: An Empirical Analysis of Participation Methods in Belgium


Paper by Anthony Simonofski, Monique Snoeck and Benoît Vanderose: “As citizens have more and more opportunities to participate in public life, it is essential that administrations integrate this participation in their e-government processes. A smarter, more participatory, governance is a well-recognized and essential part of any city that wants to become “Smart” and generate public value. In this chapter, we will focus on the impact of this participatory approach on the development of e-government services by the city. Therefore, the goal of this chapter is to identify which methods administrations can apply to co-create their egovernment services with citizens and to understand the gap between the methods used in practice and citizens’ preferences.

As citizens have more and more opportunities to participate in public life, it is essential that administrations integrate this participation in their e-government processes. A smarter, more participatory, governance is a well-recognized and essential part of any city that wants to become “Smart” and generate public value. In this chapter, we will focus on the impact of this participatory approach on the development of e-government services by the city. Therefore, the goal of this chapter is to identify which methods administrations can apply to co-create their e-government services with citizens and to understand the gap between the methods used in practice and citizens’ preferences.

This chapter contributes to research and practice in different ways. First, the literature review allows the identification of eight participation methods to co-create e-government services. Second, we further examine these methods by means of 28 in-depth interviews, a questionnaire sent to public servants and a questionnaire sent to citizens. This multi-method approach allows identifying the barriers and drivers of public servants regarding the co-creation of e-government services but also the citizens’ perception of these methods. By contrasting the identified methods with their implementation, we better understand the discrepancies between literature and practice. At the same time, this chapter will give practitioners a repository of participation methods as well as information about the perception public servants and citizens have of them. Finally, we expect the insights provided in this chapter will stimulate research on the practical use of all these different methods…(More)”

Open-Data: A Solution When Data Constitutes an Essential Facility?


Chapter by Claire Borsenberger, Mathilde Hoang and Denis Joram: “Thanks to appropriate data algorithms, firms, especially those on-line, are able to extract detailed knowledge about consumers and markets. This raises the question of the essential facility character of data. Moreover, the features of digital markets lead to a concentration of this core input in the hands of few big “superstars” and arouse legitimate economic and societal concerns. In a more and more data-driven society, one could ask if data openness is a solution to deal with power derived from data concentration. We conclude that only a case-by-case approach should be followed. Mandatory open data policy should be conditioned on an ex-ante cost-benefit analysis proving that the benefits of disclosure exceed its costs….(More)”.

How the medium shapes the message: Printing and the rise of the arts and sciences


Paper by C. Jara-Figueroa, Amy Z. Yu, and César A. Hidalgo: “Communication technologies, from printing to social media, affect our historical records by changing the way ideas are spread and recorded. Yet, finding statistical evidence of this fact has been challenging. Here we combine a common causal inference technique (instrumental variable estimation) with a dataset on nearly forty thousand biographies from Wikipedia (Pantheon 2.0), to study the effect of the introduction of printing in European cities on Wikipedia’s digital biographical records.

By using a city’s distance to Mainz as an instrument for the adoption of the movable type press, we show that European cities that adopted printing earlier were more likely to become the birthplace of a famous scientist or artist during the years following the invention of printing. We bring these findings to recent communication technologies by showing that the number of radios and televisions in a country correlates with the number of globally famous performing artists and sports players born in that country, even after controlling for GDP, population, and including country and year fixed effects. These findings support the hypothesis that the introduction of communication technologies can bias historical records in the direction of the content that is best suited for each technology….(More)”.