Income Inequality Is Rising. Are We Even Measuring It Correctly?


Article by Jon Jachimowicz et al: “Income inequality is on the rise in many countries around the world, according to the United Nations. What’s more, disparities in global income were exacerbated by the COVID-19 pandemic, with some countries facing greater economic losses than others.

Policymakers are increasingly focusing on finding ways to reduce inequality to create a more just and equal society for all. In making decisions on how to best intervene, policymakers commonly rely on the Gini coefficient, a statistical measure of resource distribution, including wealth and income levels, within a population. The Gini coefficient measures perfect equality as zero and maximum inequality as one, with higher numbers indicating a greater concentration of resources in the hands of a few.

This measure has long dominated our understanding (pdf) of what inequality means, largely because this metric is used by governments around the world, is released by statistics bureaus in multiple countries, and is commonly discussed in news media and policy discussions alike.

In our paper, recently published in Nature Human Behaviour, we argue that researchers and policymakers rely too heavily on the Gini coefficient—and that by broadening our understanding of how we measure inequality, we can both uncover its impact and intervene to more effectively correct It…(More)”.

Nudging Science Towards Fairer Evaluations: Evidence From Peer Review


Paper by Inna Smirnova, Daniel M. Romero, and Misha Teplitskiy: “Peer review is widely used to select scientific projects for funding and publication, but there is growing evidence that it is biased towards prestigious individuals and institutions. Although anonymizing submissions can reduce prestige bias, many organizations do not implement anonymization, in part because enforcing it can be prohibitively costly. Here, we examine whether nudging but not forcing authors to anonymize their submissions reduces prestige bias. We partnered with IOP Publishing, one of the largest academic publishers, which adopted a policy strongly encouraging authors to anonymize their submissions and staggered the policy rollout across its physics journal portfolio. We examine 156,015 submissions to 57 peer-reviewed journals received between January 2018 and February 2022 and measure author prestige with citations accrued at submission time. Higher prestige first authors were less likely to anonymize. Nevertheless, for low-prestige authors, the policy increased positive peer reviews by 2.4% and acceptance by 5.6%. For middle- and high-prestige authors, the policy decreased positive reviews (1.8% and 1%) and final acceptance (4.6% and 2.2%). The policy did not have unintended consequences on reviewer recruitment or the characteristics of submitting authors. Overall, nudges are a simple, low-cost, and effective method to reduce prestige bias and should be considered by organizations for which enforced-anonymization is impractical…(More)”.

Blue Spoons: Sparking Communication About Appropriate Technology Use


Paper by Arun G. Chandrasekhar, Esther Duflo, Michael Kremer, João F. Pugliese, Jonathan Robinson & Frank Schilbach: “An enduring puzzle regarding technology adoption in developing countries is that new technologies often diffuse slowly through the social network. Two of the key predictions of the canonical epidemiological model of technology diffusion are that forums to share information and higher returns to technology should both spur social transmission. We design a large-scale experiment to test these predictions among farmers in Western Kenya, and we fail to find support for either. However, in the same context, we introduce a technology that diffuses very fast: a simple kitchen spoon (painted in blue) to measure out how much fertilizer to use. We develop a model that explains both the failure of the standard approaches and the surprising success of this new technology. The core idea of the model is that not all information is reliable, and farmers are reluctant to develop a reputation of passing along false information. The model and data suggest that there is value in developing simple, transparent technologies to facilitate communication…(More)”.

A journey toward an open data culture through transformation of shared data into a data resource


Paper by Scott D. Kahn and Anne Koralova: “The transition to open data practices is straightforward albeit surprisingly challenging to implement largely due to cultural and policy issues. A general data sharing framework is presented along with two case studies that highlight these challenges and offer practical solutions that can be adjusted depending on the type of data collected, the country in which the study is initiated, and the prevailing research culture. Embracing the constraints imposed by data privacy considerations, especially for biomedical data, must be emphasized for data outside of the United States until data privacy law(s) are established at the Federal and/or State level…(More).”

A little good goes an unexpectedly long way: Underestimating the positive impact of kindness on recipients.


Paper by Kumar, A., & Epley, N. : “Performing random acts of kindness increases happiness in both givers and receivers, but we find that givers systematically undervalue their positive impact on recipients. In both field and laboratory settings (Experiments 1a through 2b), those performing an act of kindness reported how positive they expected recipients would feel and recipients reported how they actually felt. From giving away a cup of hot chocolate in a park to giving away a gift in the lab, those performing a random act of kindness consistently underestimated how positive their recipients would feel, thinking their act was of less value than recipients perceived it to be. Givers’ miscalibrated expectations are driven partly by an egocentric bias in evaluations of the act itself (Experiment 3). Whereas recipients’ positive reactions are enhanced by the warmth conveyed in a kind act, givers’ expectations are relatively insensitive to the warmth conveyed in their action. Underestimating the positive impact of a random act of kindness also leads givers to underestimate the behavioral consequences their prosociality will produce in recipients through indirect reciprocity (Experiment 4). We suggest that givers’ miscalibrated expectations matter because they can create a barrier to engaging in prosocial actions more often in everyday life (Experiments 5a and 5b), which may result in people missing out on opportunities to enhance both their own and others’ well-being…(More)”

Nowcasting daily population displacement in Ukraine through social media advertising data


Pre-Publication Paper by Douglas R. Leasure et al: “In times of crisis, real-time data mapping population displacements are invaluable for targeted humanitarian response. The Russian invasion of Ukraine on February 24, 2022 forcibly displaced millions of people from their homes including nearly 6m refugees flowing across the border in just a few weeks, but information was scarce regarding displaced and vulnerable populations who remained inside Ukraine. We leveraged near real-time social media marketing data to estimate sub-national population sizes every day disaggregated by age and sex. Our metric of internal displacement estimated that 5.3m people had been internally displaced away from their baseline administrative region by March 14. Results revealed four distinct displacement patterns: large scale evacuations, refugee staging areas, internal areas of refuge, and irregular dynamics. While this innovative approach provided one of the only quantitative estimates of internal displacement in virtual real-time, we conclude by acknowledging risks and challenges for the future…(More)”.

Collective Intelligence


Editorial to the Inaugural Issue by Jessica Flack et al: “It is easy to see the potential of collective intelligence research to serve as a unifying force in the sciences. Its “nuts and bolts” methodological and conceptual questions apply across scales – how to characterize minimal and optimal algorithms for aggregating and storing information; how to derive macroscopic collective outputs from microscopic inputs; how to measure the robustness and vulnerability of collective outcomes, the design of algorithms for information aggregation; the role of diversity in forecasting and estimation; the dynamics of problem-solving in groups; team dynamics and complementary and synergistic roles; open innovation processes, and, more recently, the practical options for combining artificial and collective intelligence.

Despite this potential, the collective intelligence scholarly community is currently distributed over somewhat independent clusters of fields and research groups. We hope to bring these groups together. In this spirit, we will provide space for cross-cutting research aimed at principles of collective intelligence but also for field-specific research.

How should we understand the objectives of collective intelligence in different contexts? These can include identifying an object, making predictions, solving a problem, taking action, achieving an outcome, surviving in a dynamic environment, or a combination of these. Clarity on objectives is essential to measure or evaluate collective intelligence.

What can we learn about how collective intelligence addresses different types of problems, such as the characteristics of static, stochastic, and dynamic environments? For example, if stochastic, is the distribution of states best described as coming from a fixed distribution, as produced by a Markov Process, or as deeply uncertain? If a multi-agent system, to what extent do those entities cooperate or compete? What combinations of hierarchies and various forms of self-organization–such as markets, democracies, and communities–can align goals and coordinate actions?

What causes collective intelligence? How are the core processes needed for intelligence–such as sensing, deciding, and learning–performed in very different types of collective systems? What precisely is the relationship between diversity and collective intelligence (where the patterns are much more complex than often assumed)? Or the roles of synchrony and synergy in teams? What are some non-obvious patterns, such as how a slow learning rate among some population members maintains memory? What is the role of noise (as discussed in our first published dialogue), which, while harmful to the individual, can be potentially beneficial for the collective? When can a propensity for mistakes be helpful?

How should we understand the relationships between levels? For example, can aggregate or macroscale variables be derived from microscale interactions and mechanisms, or vice-versa?

Where does collective intelligence reside, and how is it “stored”—in individual heads, encoded in interaction networks and circuits, or embodied in the interaction of a group with its environment?

How are trade-offs handled in different contexts–speed and accuracy, focus and peripheral vision, exploration and exploitation?

These–and dozens of related questions–are relevant to many disciplines, and each may benefit from insights derived from others, particularly if we can develop common principles and concepts…(More)”.

Citizen science in environmental and ecological sciences


Paper by Dilek Fraisl et al: “Citizen science is an increasingly acknowledged approach applied in many scientific domains, and particularly within the environmental and ecological sciences, in which non-professional participants contribute to data collection to advance scientific research. We present contributory citizen science as a valuable method to scientists and practitioners within the environmental and ecological sciences, focusing on the full life cycle of citizen science practice, from design to implementation, evaluation and data management. We highlight key issues in citizen science and how to address them, such as participant engagement and retention, data quality assurance and bias correction, as well as ethical considerations regarding data sharing. We also provide a range of examples to illustrate the diversity of applications, from biodiversity research and land cover assessment to forest health monitoring and marine pollution. The aspects of reproducibility and data sharing are considered, placing citizen science within an encompassing open science perspective. Finally, we discuss its limitations and challenges and present an outlook for the application of citizen science in multiple science domains…(More)”.

Academic freedom and democracy in African countries: the first study to track the connection


Article by Liisa Laakso: “There is growing interest in the state of academic freedom worldwide. A 1997 Unesco document defines it as the right of scholars to teach, discuss, research, publish, express opinions about systems and participate in academic bodies. Academic freedom is a cornerstone of education and knowledge.

Yet there is surprisingly little empirical research on the actual impact of academic freedom. Comparable measurements have also been scarce. It was only in 2020 that a worldwide index of academic freedom was launched by the Varieties of Democracy database, V-Dem, in collaboration with the Scholars at Risk Network….

My research has been on the political science discipline in African universities and its role in political developments on the continent. As part of this project, I have investigated the impact of academic freedom in the post-Cold War democratic transitions in Africa.

study I published with the Tunisian economist Hajer Kratou showed that academic freedom has a significant positive effect on democracy, when democracy is measured by indicators such as the quality of elections and executive accountability.

However, the time factor is significant. Countries with high levels of academic freedom before and at the time of their democratic transition showed high levels of democracy even 5, 10 and 15 years later. In contrast, the political situation was more likely to deteriorate in countries where academic freedom was restricted at the time of transition. The impact of academic freedom was greatest in low-income countries….(More)”

Design in the Civic Space: Generating Impact in City Government


Paper by Stephanie Wade and Jon Freach:” When design in the private sector is used as a catalyst for innovation it can produce insight into human experience, awareness of equitable and inequitable conditions, and clarity about needs and wants. But when we think of applying design in a government complex, the complicated nature of the civic arena means that public sector servants need to learn and apply design in ways that are specific to the complex ecosystem of long-standing social challenges they face, and learn new mindsets, methods, and ways of working that challenge established practices in a bureaucratic environment.

Design offers tools to help navigate the ambiguous boundaries of these complex problems and improve the city’s organizational culture so that it delivers better services to residents and the communities they live in. For the new practitioner in government, design can seem exciting, inspiring, hopeful, and fun because, over the past decade, it has quickly become a popular and novel way to approach city policy and service design. In the early part of the learning process, people often report that using design helps visualize their thoughts, spark meaningful dialogue, and find connections between problems, data, and ideas. But for some, when the going gets tough, when the ambiguity of overlapping and long-standing complex civic problems, a large number of stakeholders, causes, and effects begin to surface, design practices can seem ineffective, illogical, slow, confusing, and burdensome.
This paper will explore the highs and lows of using design in local government to help cities innovate. The authors, who have worked together to conceive, create, and deliver innovation training to over 100 global cities through multiple innovation programs, in the United States Federal Government, and in higher education, share examples from their fieldwork supported by the experiences of city staff members who have applied design methods in their jobs. Readers will discover how design works to catalyze innovative thinking in the public sector, reframe complex problems, center opportunities in resident needs, especially among those residents who have historically been excluded from government decision-making, make sensemaking a cultural norm and idea generation a ritual in otherwise traditional bureaucratic cultures, and work through the ambiguity of contemporary civic problems to generate measurable impact for residents. They will also learn why design sometimes fails to deliver its promise of innovation in government and see what happens when its language, mindsets, and tools make it hard for city innovation teams to adopt and apply…(More)”.