Smarter, Better, Faster: The Potential for Predictive Analytics and Rapid-Cycle Evaluation to Improve Program Development and Outcomes

Paper by Scott Cody and Andrew Asher for The Hamilton Project: “Public administrators have always been interested in identifying cost-effective strategies for managing their programs. As government agencies invest in data warehouses and business intelligence capabilities, it becomes feasible to employ analytic techniques used more-commonly in the private sector. Predictive analytics and rapid-cycle evaluation are analytical approaches that are used to do more than describe the current status of programs: in both the public and private sectors, these approaches provide decision makers with guidance on what to do next. Predictive analytics refers to a broad range of methods used to anticipate an outcome. For many types of government programs, predictive analytics can be used to anticipate how individuals will respond to interventions, including new services, targeted prompts to participants, and even automated actions by transactional systems. With information from predictive analytics, administrators can identify who is likely to benefit from an intervention and find ways to formulate better interventions. Predictive analytics can also be embedded in agency operational systems to guide real-time decision making. For instance, predictive analytics could be embedded in intake and eligibility determination systems, prompting frontline workers to review suspect client applications more-closely to determine whether income or assets may be understated or deductions underclaimed…”