The Refugee Identity


Medium essay byPaul Currion: “From Article 6 of the UN Declaration of Human Rights (“Everyone has the right to recognition everywhere as a person before the law” ) to Sustainable Development Goal 16.9 (“By 2030, provide legal identity for all, including birth registration”) to the formation of the ID2020 Alliance (whose fourth goal is to “Enable more efficient and effective delivery of development and humanitarian aid), identity has been central to the modern project of development.

Discussion of identity within the aid sector is embedded in a much larger set of political, social, economic, legal and technical discussions at a national and global level. This review will not address that larger set of discussions, but will instead focus specifically on humanitarian aid, and more specifically refugees, and more specifically still on refugee camps as a location in which identity provision is both critical and contested. It is the first output of a DFID-funded research project examining data requirements for service delivery (by UN agencies and NGOs) within refugee camps.

Given how central the issue of identity is for refugees, there is surprisingly little literature about how identity provision is implemented in the context of refugee camps.1 This essay introduces some of the critical issues relating to identity (particularly in the context of the digitisation of aid) and explores how they relate to the research project. It is accompanied by a bibliography for those who are interested in exploring the issue further.,,,(More)”.

Trustworthy data will transform the world


 at the Financial Times: “The internet’s original sin was identified as early as 1993 in a New Yorker cartoon. “On the internet, nobody knows you’re a dog,” the caption ran beneath an illustration of a pooch at a keyboard. That anonymity has brought some benefits. But it has also created myriad problems, injecting distrust into the digital world. If you do not know the provenance and integrity of information and data, how can you trust their veracity?

That has led to many of the scourges of our times, such as cyber crime, identity theft and fake news. In his Alan Turing Institute lecture in London last week, the American computer scientist Sandy Pentland outlined the massive gains that could result from trusted data.

The MIT professor argued that the explosion of such information would give us the capability to understand our world in far more detail than ever before. Most of what we know in the fields of sociology, psychology, political science and medicine is derived from tiny experiments in controlled environments. But the data revolution enables us to observe behaviour as it happens at mass scale in the real world. That feedback could provide invaluable evidence about which theories are most valid and which policies and products work best.

The promise is that we make soft social science harder and more predictive. That, in turn, could lead to better organisations, fairer government, and more effective monitoring of our progress towards achieving collective ambitions, such as the UN’s sustainable development goals. To take one small example, Mr Pentland illustrated the strong correlation between connectivity and wealth. By studying the telephone records of 100,000 users in south-east Asia, researchers have plotted social connectivity against income. The conclusion: “The more diverse your connections, the more money you have.” This is not necessarily a causal relationship but it does have a strong causal element, he suggested.

Similar studies of European cities have shown an almost total segregation between groups of different socio-economic status. That lack of connectivity has to be addressed if our politics is not to descend further into a meaningless dialogue.

Data give us a new way to measure progress.

For years, the Open Data movement has been working to create public data sets that can better inform decision making. This worldwide movement is prising open anonymised public data sets, such as transport records, so that they can be used by academics, entrepreneurs and civil society groups. However, much of the most valuable data is held by private entities, notably the consumer tech companies, telecoms operators, retailers and banks. “The big win would be to include private data as a public good,” Mr Pentland said….(More)”.

Data Collaboratives can transform the way civil society organisations find solutions


Stefaan G. Verhulst at Disrupt & Innovate: “The need for innovation is clear: The twenty-first century is shaping up to be one of the most challenging in recent history. From climate change to income inequality to geopolitical upheaval and terrorism: the difficulties confronting International Civil Society Organisations (ICSOs) are unprecedented not only in their variety but also in their complexity. At the same time, today’s practices and tools used by ICSOs seem stale and outdated. Increasingly, it is clear, we need not only new solutions but new methods for arriving at solutions.

Data will likely become more central to meeting these challenges. We live in a quantified era. It is estimated that 90% of the world’s data was generated in just the last two years. We know that this data can help us understand the world in new ways and help us meet the challenges mentioned above. However, we need new data collaboration methods to help us extract the insights from that data.

UNTAPPED DATA POTENTIAL

For all of data’s potential to address public challenges, the truth remains that most data generated today is in fact collected by the private sector – including ICSOs who are often collecting a vast amount of data – such as, for instance, the International Committee of the Red Cross, which generates various (often sensitive) data related to humanitarian activities. This data, typically ensconced in tightly held databases toward maintaining competitive advantage or protecting from harmful intrusion, contains tremendous possible insights and avenues for innovation in how we solve public problems. But because of access restrictions and often limited data science capacity, its vast potential often goes untapped.

DATA COLLABORATIVES AS A SOLUTION

Data Collaboratives offer a way around this limitation. They represent an emerging public-private partnership model, in which participants from different areas — including the private sector, government, and civil society — come together to exchange data and pool analytical expertise.

While still an emerging practice, examples of such partnerships now exist around the world, across sectors and public policy domains. Importantly several ICSOs have started to collaborate with others around their own data and that of the private and public sector. For example:

  • Several civil society organisations, academics, and donor agencies are partnering in the Health Data Collaborative to improve the global data infrastructure necessary to make smarter global and local health decisions and to track progress against the Sustainable Development Goals (SDGs).
  • Additionally, the UN Office for the Coordination of Humanitarian Affairs (UNOCHA) built Humanitarian Data Exchange (HDX), a platform for sharing humanitarian from and for ICSOs – including Caritas, InterAction and others – donor agencies, national and international bodies, and other humanitarian organisations.

These are a few examples of Data Collaboratives that ICSOs are participating in. Yet, the potential for collaboration goes beyond these examples. Likewise, so do the concerns regarding data protection and privacy….(More)”.

World’s biggest city database shines light on our increasingly urbanised planet


EU Joint Research Centers: “The JRC has launched a new tool with data on all 10,000 urban centres scattered across the globe. It is the largest and most comprehensive database on cities ever published.

With data derived from the JRC’s Global Human Settlement Layer (GHSL), researchers have discovered that the world has become even more urbanised than previously thought.

Populations in urban areas doubled in Africa and grew by 1.1 billion in Asia between 1990 and 2015.

Globally, more than 400 cities have a population between 1 and 5 million. More than 40 cities have 5 to 10 million people, and there are 32 ‘megacities’ with above 10 million inhabitants.

There are some promising signs for the environment: Cities became 25% greener between 2000 and 2015. And although air pollution in urban centres was increasing from 1990, between 2000 and 2015 the trend was reversed.

With every high density area of at least 50,000 inhabitants covered, the city centres database shows growth in population and built-up areas over the past 40 years.  Environmental factors tracked include:

  • ‘Greenness’: the estimated amount of healthy vegetation in the city centre
  • Soil sealing: the covering of the soil surface with materials like concrete and stone, as a result of new buildings, roads and other public and private spaces
  • Air pollution: the level of polluting particles such as PM2.5 in the air
  • Vicinity to protected areas: the percentage of natural protected space within 30 km distance from the city centre’s border
  • Disaster risk-related exposure of population and buildings in low lying areas and on steep slopes.

The data is free to access and open to everyone. It applies big data analytics and a global, people-based definition of cities, providing support to monitor global urbanisation and the 2030 Sustainable Development Agenda.

The information gained from the GHSL is used to map out population density and settlement maps. Satellite, census and local geographic information are used to create the maps….(More)”.

And Yet They Thrive!—Regaining the Relevance of a Transparency System


Paper by Pontus Hedlin in Development Policy Review: “Over the past decade, a host of donor organizations implemented transparency systems to make international development aid more transparent to the public. These initiatives have met with little public interest, but their proliferation and development show no sign of diminishing. This article shows how internal importance to the political system, fueled by formal rankings and the exhibition of transparency systems as a flagship initiative, can replace relevance to the public as a driving force for sustainable development. The article concludes by discussing the possibility of a future development where transparency systems finally do connect with user groups, such as citizens of both donor and recipient countries, and gain a relevance even beyond original intentions….(More)”.

Selected Readings on Data, Gender, and Mobility


By Michelle Winowatan, Andrew Young, and Stefaan Verhulst

The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of data, gender, and mobility was originally published in 2017.

This edition of the Selected Readings was  developed as part of an ongoing project at the GovLab, supported by Data2X, in collaboration with UNICEF, DigitalGlobe, IDS (UDD/Telefonica R&D), and the ISI Foundation, to establish a data collaborative to analyze unequal access to urban transportation for women and girls in Chile. We thank all our partners for their suggestions to the below curation – in particular Leo Ferres at IDS who got us started with this collection; Ciro Cattuto and Michele Tizzoni from the ISI Foundation; and Bapu Vaitla at Data2X for their pointers to the growing data and mobility literature. 

Introduction

Daily mobility is key for gender equity. Access to transportation contributes to women’s agency and independence. The ability to move from place to place safely and efficiently can allow women to access education, work, and the public domain more generally. Yet, mobility is not just a means to access various opportunities. It is also a means to enter the public domain.

Women’s mobility is a multi-layered challenge
Women’s daily mobility, however, is often hampered by social, cultural, infrastructural, and technical barriers. Cultural bias, for instance, limits women mobility in a way that women are confined to an area with close proximity to their house due to society’s double standard on women to be homemakers. From an infrastructural perspective, public transportation mostly only accommodates home-to-work trips, when in reality women often make more complex trips with stops, for example, at the market, school, healthcare provider – sometimes called “trip chaining.” From a safety perspective, women tend to avoid making trips in certain areas and/or at certain time, due to a constant risk of being sexually harassed on public places. Women are also pushed toward more expensive transportation – such as taking a cab instead of a bus or train – based on safety concerns.

The growing importance of (new sources of) data
Researchers are increasingly experimenting with ways to address these interdependent problems through the analysis of diverse datasets, often collected by private sector businesses and other non-governmental entities. Gender-disaggregated mobile phone records, geospatial data, satellite imagery, and social media data, to name a few, are providing evidence-based insight into gender and mobility concerns. Such data collaboratives – the exchange of data across sectors to create public value – can help governments, international organizations, and other public sector entities in the move toward more inclusive urban and transportation planning, and the promotion of gender equity.
The below curated set of readings seek to focus on the following areas:

  1. Insights on how data can inform gender empowerment initiatives,
  2. Emergent research into the capacity of new data sources – like call detail records (CDRs) and satellite imagery – to increase our understanding of human mobility patterns, and
  3. Publications exploring data-driven policy for gender equity in mobility.

Readings are listed in alphabetical order.

We selected the readings based upon their focus (gender and/or mobility related); scope and representativeness (going beyond one project or context); type of data used (such as CDRs and satellite imagery); and date of publication.

Annotated Reading List

Data and Gender

Blumenstock, Joshua, and Nathan Eagle. Mobile Divides: Gender, Socioeconomic Status, and Mobile Phone Use in Rwanda. ACM Press, 2010.

  • Using traditional survey and mobile phone operator data, this study analyzes gender and socioeconomic divides in mobile phone use in Rwanda, where it is found that the use of mobile phones is significantly more prevalent in men and the higher class.
  • The study also shows the differences in the way men and women use phones, for example: women are more likely to use a shared phone than men.
  • The authors frame their findings around gender and economic inequality in the country to the end of providing pointers for government action.

Bosco, Claudio, et al. Mapping Indicators of Female Welfare at High Spatial Resolution. WorldPop and Flowminder, 2015.

  • This report focuses on early adolescence in girls, which often comes with higher risk of violence, fewer economic opportunity, and restrictions on mobility. Significant data gaps, methodological and ethical issues surrounding data collection for girls also create barriers for policymakers to create evidence-based policy to address those issues.
  • The authors analyze geolocated household survey data, using statistical models and validation techniques, and creates high-resolution maps of various sex-disaggregated indicators, such as nutrition level, access to contraception, and literacy, to better inform local policy making processes.
  • Further, it identifies the gender data gap and issues surrounding gender data collection, and provides arguments for why having a comprehensive data can help create better policy and contribute to the achievements of the Sustainable Development Goals (SDGs).

Buvinic, Mayra, Rebecca Furst-Nichols, and Gayatri Koolwal. Mapping Gender Data Gaps. Data2X, 2014.

  • This study identifies gaps in gender data in developing countries on health, education, economic opportunities, political participation, and human security issues.
  • It recommends ways to close the gender data gap through censuses and micro-level surveys, service and administrative records, and emphasizes how “big data” in particular can fill the missing data that will be able to measure the progress of women and girls well being. The authors argue that dentifying these gaps is key to advancing gender equality and women’s empowerment, one of the SDGs.

Catalyzing Inclusive FInancial System: Chile’s Commitment to Women’s Data. Data2X, 2014.

  • This article analyzes global and national data in the banking sector to fill the gap of sex-disaggregated data in Chile. The purpose of the study is to describe the difference in spending behavior and priorities between women and men, identify the challenges for women in accessing financial services, and create policies that promote women inclusion in Chile.

Ready to Measure: Twenty Indicators for Monitoring SDG Gender Targets. Open Data Watch and Data2X, 2016.

  • Using readily available data this study identifies 20 SDG indicators related to gender issues that can serve as a baseline measurement for advancing gender equality, such as percentage of women aged 20-24 who were married or in a union before age 18 (child marriage), proportion of seats held by women in national parliament, and share of women among mobile telephone owners, among others.

Ready to Measure Phase II: Indicators Available to Monitor SDG Gender Targets. Open Data Watch and Data2X, 2017.

  • The Phase II paper is an extension of the Ready to Measure Phase I above. Where Phase I identifies the readily available data to measure women and girls well-being, Phase II provides informations on how to access and summarizes insights from this data.
  • Phase II elaborates the insights about data gathered from ready to measure indicators and finds that although underlying data to measure indicators of women and girls’ wellbeing is readily available in most cases, it is typically not sex-disaggregated.
  • Over one in five – 53 out of 232 – SDG indicators specifically refer to women and girls. However, further analysis from this study reveals that at least 34 more indicators should be disaggregated by sex. For instance, there should be 15 more sex-disaggregated indicators for SDG number 3: “Ensure healthy lives and promote well-being for all at all ages.”
  • The report recommends national statistical agencies to take the lead and assert additional effort to fill the data gap by utilizing tools such as the statistical model to fill the current gender data gap for each of the SDGs.

Reed, Philip J., Muhammad Raza Khan, and Joshua Blumenstock. Observing gender dynamics and disparities with mobile phone metadata. International Conference on Information and Communication Technologies and Development (ICTD), 2016.

  • The study analyzes mobile phone logs of millions of Pakistani residents to explore whether there is a difference in mobile phone usage behavior between male and female and determine the extent to which gender inequality is reflected in mobile phone usage.
  • It utilizes mobile phone data to analyze the pattern of usage behavior between genders, and socioeconomic and demographic data obtained from census and advocacy groups to assess the state of gender equality in each region in Pakistan.
  • One of its findings is a strong positive correlation between proportion of female mobile phone users and education score.

Stehlé, Juliette, et al. Gender homophily from spatial behavior in a primary school: A sociometric study. 2013.

    • This paper seeks to understand homophily, a human behavior characterizes by interaction with peers who have similarities in “physical attributes to tastes or political opinions”. Further, it seeks to identify the magnitude of influence, a type of homophily has to social structures.
    • Focusing on gender interaction among primary school aged children in France, this paper collects data from wearable devices from 200 children in the period of 2 days and measure the physical proximity and duration of the interaction among those children in the playground.
  • It finds that interaction patterns are significantly determined by grade and class structure of the school. Meaning that children belonging to the same class have most interactions, and that lower grades usually do not interact with higher grades.
  • From a gender lens, this study finds that mixed-gender interaction lasts shorter relative to same-gender interaction. In addition, interaction among girls is also longer compared to interaction among boys. These indicate that the children in this school tend to have stronger relationships within their own gender, or what the study calls gender homophily. It further finds that gender homophily is apparent in all classes.

Data and Mobility

Bengtsson, Linus, et al. Using Mobile Phone Data to Predict the Spatial Spread of Cholera. Flowminder, 2015.

  • This study seeks to predict the 2010 cholera epidemic in Haiti using 2.9 million anonymous mobile phone SIM cards and reported cases of Cholera from the Haitian Directorate of Health, where 78 study areas were analyzed in the period of October 16 – December 16, 2010.
  • From this dataset, the study creates a mobility matrix that indicates mobile phone movement from one study area to another and combines that with the number of reported case of cholera in the study areas to calculate the infectious pressure level of those areas.
  • The main finding of its analysis shows that the outbreak risk of a study area correlates positively with the infectious pressure level, where an infectious pressure of over 22 results in an outbreak within 7 days. Further, it finds that the infectious pressure level can inform the sensitivity and specificity of the outbreak prediction.
  • It hopes to improve infectious disease containment by identifying areas with highest risks of outbreaks.

Calabrese, Francesco, et al. Understanding Individual Mobility Patterns from Urban Sensing Data: A Mobile Phone Trace Example. SENSEable City Lab, MIT, 2012.

  • This study compares mobile phone data and odometer readings from annual safety inspections to characterize individual mobility and vehicular mobility in the Boston Metropolitan Area, measured by the average daily total trip length of mobile phone users and average daily Vehicular Kilometers Traveled (VKT).
  • The study found that, “accessibility to work and non-work destinations are the two most important factors in explaining the regional variations in individual and vehicular mobility, while the impacts of populations density and land use mix on both mobility measures are insignificant.” Further, “a well-connected street network is negatively associated with daily vehicular total trip length.”
  • This study demonstrates the potential for mobile phone data to provide useful and updatable information on individual mobility patterns to inform transportation and mobility research.

Campos-Cordobés, Sergio, et al. “Chapter 5 – Big Data in Road Transport and Mobility Research.” Intelligent Vehicles. Edited by Felipe Jiménez. Butterworth-Heinemann, 2018.

  • This study outlines a number of techniques and data sources – such as geolocation information, mobile phone data, and social network observation – that could be leveraged to predict human mobility.
  • The authors also provide a number of examples of real-world applications of big data to address transportation and mobility problems, such as transport demand modeling, short-term traffic prediction, and route planning.

Lin, Miao, and Wen-Jing Hsu. Mining GPS Data for Mobility Patterns: A Survey. Pervasive and Mobile Computing vol. 12,, 2014.

  • This study surveys the current field of research using high resolution positioning data (GPS) to capture mobility patterns.
  • The survey focuses on analyses related to frequently visited locations, modes of transportation, trajectory patterns, and placed-based activities. The authors find “high regularity” in human mobility patterns despite high levels of variation among the mobility areas covered by individuals.

Phithakkitnukoon, Santi, Zbigniew Smoreda, and Patrick Olivier. Socio-Geography of Human Mobility: A Study Using Longitudinal Mobile Phone Data. PLoS ONE, 2012.

  • This study used a year’s call logs and location data of approximately one million mobile phone users in Portugal to analyze the association between individuals’ mobility and their social networks.
  • It measures and analyze travel scope (locations visited) and geo-social radius (distance from friends, family, and acquaintances) to determine the association.
  • It finds that 80% of places visited are within 20 km of an individual’s nearest social ties’ location and it rises to 90% at 45 km radius. Further, as population density increases, distance between individuals and their social networks decreases.
  • The findings in this study demonstrates how mobile phone data can provide insights to “the socio-geography of human mobility”.

Semanjski, Ivana, and Sidharta Gautama. Crowdsourcing Mobility Insights – Reflection of Attitude Based Segments on High Resolution Mobility Behaviour Data. vol. 71, Transportation Research, 2016.

  • Using cellphone data, this study maps attitudinal segments that explain how age, gender, occupation, household size, income, and car ownership influence an individual’s mobility patterns. This type of segment analysis is seen as particularly useful for targeted messaging.
  • The authors argue that these time- and space-specific insights could also provide value for government officials and policymakers, by, for example, allowing for evidence-based transportation pricing options and public sector advertising campaign placement.

Silveira, Lucas M., et al. MobHet: Predicting Human Mobility using Heterogeneous Data Sources. vol. 95, Computer Communications , 2016.

  • This study explores the potential of using data from multiple sources (e.g., Twitter and Foursquare), in addition to GPS data, to provide a more accurate prediction of human mobility. This heterogenous data captures popularity of different locations, frequency of visits to those locations, and the relationships among people who are moving around the target area. The authors’ initial experimentation finds that the combination of these sources of data are demonstrated to be more accurate in identifying human mobility patterns.

Wilson, Robin, et al. Rapid and Near Real-Time Assessments of Population Displacement Using Mobile Phone Data Following Disasters: The 2015 Nepal Earthquake. PLOS Current Disasters, 2016.

  • Utilizing call detail records of 12 million mobile phone users in Nepal, this study seeks spatio-temporal details of the population after the earthquake on April 25, 2015.
  • It seeks to answer the problem of slow and ineffective disaster response, by capturing near real-time displacement pattern provided by mobile phone call detail records, in order to inform humanitarian agencies on where to distribute their assistance. The preliminary results of this study were available nine days after the earthquake.
  • This project relies on the foundational cooperation with mobile phone operator, who supplied the de-identified data from 12 million users, before the earthquake.
  • The study finds that shortly after the earthquake there was an anomalous population movement out of the Kathmandu Valley, the most impacted area, to surrounding areas. The study estimates 390,000 people above normal had left the valley.

Data, Gender and Mobility

Althoff, Tim, et al. “Large-Scale Physical Activity Data Reveal Worldwide Activity Inequality.” Nature, 2017.

  • This study’s analysis of worldwide physical activity is built on a dataset containing 68 million days of physical activity of 717,527 people collected through their smartphone accelerometers.
  • The authors find a significant reduction in female activity levels in cities with high active inequality, where high active inequality is associated with low city walkability – walkability indicators include pedestrian facilities (city block length, intersection density, etc.) and amenities (shops, parks, etc.).
  • Further, they find that high active inequality is associated with high levels of inactivity-related health problems, like obesity.

Borker, Girija. “Safety First: Street Harassment and Women’s Educational Choices in India.” Stop Street Harassment, 2017.

  • Using data collected from SafetiPin, an application that allows user to mark an area on a map as safe or not, and Safecity, another application that lets users share their experience of harassment in public places, the researcher analyzes the safety of travel routes surrounding different colleges in India and their effect on women’s college choices.
  • The study finds that women are willing to go to a lower ranked college in order to avoid higher risk of street harassment. Women who choose the best college from their set of options, spend an average of $250 more each year to access safer modes of transportation.

Frias-Martinez, Vanessa, Enrique Frias-Martinez, and Nuria Oliver. A Gender-Centric Analysis of Calling Behavior in a Developing Economy Using Call Detail Records. Association for the Advancement of Articial Intelligence, 2010.

  • Using encrypted Call Detail Records (CDRs) of 10,000 participants in a developing economy, this study analyzes the behavioral, social, and mobility variables to determine the gender of a mobile phone user, and finds that there is a difference in behavioral and social variables in mobile phone use between female and male.
  • It finds that women have higher usage of phone in terms of number of calls made, call duration, and call expenses compared to men. Women also have bigger social network, meaning that the number of unique phone numbers that contact or get contacted is larger. It finds no statistically significant difference in terms of distance made between calls in men and women.
  • Frias-Martinez et al recommends to take these findings into consideration when designing a cellphone based service.

Psylla, Ioanna, Piotr Sapiezynski, Enys Mones, Sune Lehmann. “The role of gender in social network organization.” PLoS ONE 12, December 20, 2017.

  • Using a large dataset of high resolution data collected through mobile phones, as well as detailed questionnaires, this report studies gender differences in a large cohort. The researchers consider mobility behavior and individual personality traits among a group of more than 800 university students.
  • Analyzing mobility data, they find both that women visit more unique locations over time, and that they have more homogeneous time distribution over their visited locations than men, indicating the time commitment of women is more widely spread across places.

Vaitla, Bapu. Big Data and the Well-Being of Women and Girls: Applications on the Social Scientific Frontier. Data2X, Apr. 2017.

  • In this study, the researchers use geospatial data, credit card and cell phone information, and social media posts to identify problems–such as malnutrition, education, access to healthcare, mental health–facing women and girls in developing countries.
  • From the credit card and cell phone data in particular, the report finds that analyzing patterns of women’s spending and mobility can provide useful insight into Latin American women’s “economic lifestyles.”
  • Based on this analysis, Vaitla recommends that various untraditional big data be used to fill gaps in conventional data sources to address the common issues of invisibility of women and girls’ data in institutional databases.

Migration Data Portal


New portal managed and developed by IOM’s Global Migration Data Analysis Centre (GMDAC)“…aims to serve as a unique access point to timely, comprehensive migration statistics and reliable information about migration data globally. The site is designed to help policy makers, national statistics officers, journalists and the general public interested in the field of migration to navigate the increasingly complex landscape of international migration data, currently scattered across different organisations and agencies.

Especially in critical times, such as those faced today, it is essential to ensure that responses to migration are based on sound facts and accurate analysis. By making the evidence about migration issues accessible and easy to understand, the Portal aims to contribute to a more informed public debate….

The five main sections of the Portal are designed to help you quickly and easily find the data and information you need.

  • DATA – Our interactive world map visualizes international, publicly-available and internationally comparable migration data.
  • THEMES – Thematic overviews explain how various aspects of migration are measured, what are the data sources, their strengths and weaknesses and provide context and analysis of key migration data.
  • TOOLS – Migration data tools are regularly added to help you find the right tools, guidelines and manuals on how to collect, interpret and disseminate migration data.
  • Sustainable Development Goals (SDGs) and the Global Compact on Migration (GCM) – Migration Data, the SDGs and the new Global Compact on Migration (GCM) – Reviews the migration-related targets in the SDGs, how they are defined and measured, and provides information on the new GCM and the migration data needs to support its implementation.
  • BLOG – Our blog and the Talking Migration Data video series provide a place for the migration data community to share their opinion on new developments and policy, new data or methods….(More)”.

Blockchain: Unpacking the disruptive potential of blockchain technology for human development.


IDRC white paper: “In the scramble to harness new technologies to propel innovation around the world, artificial intelligence, robotics, machine learning, and blockchain technologies are being explored and deployed in a wide variety of contexts globally.

Although blockchain is one of the most hyped of these new technologies, it is also perhaps the least understood. Blockchain is the distributed ledger — a database that is shared across multiple sites or institutions to furnish a secure and transparent record of events occurring during the provision of a service or contract — that supports cryptocurrencies (digital assets designed to work as mediums of exchange).

Blockchain is now underpinning applications such as land registries and identity services, but as its popularity grows, its relevance in addressing socio-economic gaps and supporting development targets like the globally-recognized UN Sustainable Development Goals is critical to unpack. Moreover, for countries in the global South that want to be more than just end users or consumers, the complex infrastructure requirements and operating costs of blockchain could prove challenging. For the purposes of real development, we need to not only understand how blockchain is workable, but also who is able to harness it to foster social inclusion and promote democratic governance.

This white paper explores the potential of blockchain technology to support human development. It provides a non-technical overview, illustrates a range of applications, and offers a series of conclusions and recommendations for additional research and potential development programming….(More)”.

Data for Development


The 2017 volume of the  Development Co-operation Report by the OECD focuses on Data for Development:  “Big Data” and “the Internet of Things” are more than buzzwords: the data revolution is transforming the way that economies and societies are functioning across the planet. The Sustainable Development Goals along with the data revolution are opportunities that should not be missed: more and better data can help boost inclusive growth, fight inequalities and combat climate change. These data are also essential to measure and monitor progress against the Sustainable Development Goals.

The value of data in enabling development is uncontested. Yet, there continue to be worrying gaps in basic data about people and the planet and weak capacity in developing countries to produce the data that policy makers need to deliver reforms and policies that achieve real, visible and long-lasting development results. At the same time, investing in building statistical capacity – which represented about 0.30% of ODA in 2015 – is not a priority for most providers of development assistance.

There is a need for stronger political leadership, greater investment and more collective action to bridge the data divide for development. With the unfolding data revolution, developing countries and donors have a unique chance to act now to boost data production and use for the benefit of citizens. This report sets out priority actions and good practices that will help policy makers and providers of development assistance to bridge the global data divide, notably by strengthening statistical systems in developing countries to produce better data for better policies and better lives…(More)”.

The frontiers of data interoperability for sustainable development


Report from the Joined-Up Data Standards [JUDS] project: “…explores where progress has been made, what challenges still remain, and how the new Collaborative on SDG Data Interoperability will play a critical role in moving forward the agenda for interoperability policy.

There is an ever-growing need for a more holistic picture of development processes worldwide and interoperability solutions that can be scaled, driven by global development agendas such as the 2030 Agenda and the Open Data movement. This requires the ability to join up data across multiple data sources and standards to create actionable information.

Solutions that create value for front-line decision makers — health centre managers, local school authorities or water and sanitation committees, for example, and those engaged in government accountability – will be crucial to meet the data needs of the SDGs, and do so in an internationally comparable way. While progress has been made at both a national and international level, moving from principle to practice by embedding interoperability into day-to-day work continues to present challenges.

Based on research and learning generated by the JUDS project team at Development Initiatives and Publish What You Fund, as well as inputs from interviews with key stakeholders, this report aims to provide an overview of the different definitions and components of interoperability and why it is important, and an outline of the current policy landscape.

We offer a set of guiding principles that we consider essential to implementing interoperability, and contextualise the five frontiers of interoperability for sustainable development that we have identified. The report also offers recommendations on what the role of the Collaborative could be in this fast-evolving landscape….(More)”.