How AI Could Help the Public Sector

Emma Martinho-Truswell in the Harvard Business Review: “A public school teacher grading papers faster is a small example of the wide-ranging benefits that artificial intelligence could bring to the public sector. A.I could be used to make government agencies more efficient, to improve the job satisfaction of public servants, and to increase the quality of services offered. Talent and motivation are wasted doing routine tasks when they could be doing more creative ones.

Applications of artificial intelligence to the public sector are broad and growing, with early experiments taking place around the world. In addition to education, public servants are using AI to help them make welfare payments and immigration decisions, detect fraud, plan new infrastructure projects, answer citizen queries, adjudicate bail hearings, triage health care cases, and establish drone paths.  The decisions we are making now will shape the impact of artificial intelligence on these and other government functions. Which tasks will be handed over to machines? And how should governments spend the labor time saved by artificial intelligence?

So far, the most promising applications of artificial intelligence use machine learning, in which a computer program learns and improves its own answers to a question by creating and iterating algorithms from a collection of data. This data is often in enormous quantities and from many sources, and a machine learning algorithm can find new connections among data that humans might not have expected. IBM’s Watson, for example, is a treatment recommendation-bot, sometimes finding treatments that human doctors might not have considered or known about.

Machine learning program may be better, cheaper, faster, or more accurate than humans at tasks that involve lots of data, complicated calculations, or repetitive tasks with clear rules. Those in public service, and in many other big organizations, may recognize part of their job in that description. The very fact that government workers are often following a set of rules — a policy or set of procedures — already presents many opportunities for automation.

To be useful, a machine learning program does not need to be better than a human in every case. In my work, we expect that much of the “low hanging fruit” of government use of machine learning will be as a first line of analysis or decision-making. Human judgment will then be critical to interpret results, manage harder cases, or hear appeals.

When the work of public servants can be done in less time, a government might reduce its staff numbers, and return money saved to taxpayers — and I am sure that some governments will pursue that option. But it’s not necessarily the one I would recommend. Governments could instead choose to invest in the quality of its services. They can re-employ workers’ time towards more rewarding work that requires lateral thinking, empathy, and creativity — all things at which humans continue to outperform even the most sophisticated AI program….(More)”.