Turning the Cacophony of the Internet’s Tower of Babel into a Coherent General Collective Intelligence


Paper by Andy E. Williams: “Increasing the number, diversity, or uniformity of opinions in a group does not necessarily imply that those opinions will converge into a single more “intelligent” one, if an objective definition of the term intelligent exists as it applies to opinions. However, a recently developed approach called human-centric functional modeling provides what might be the first general model for individual or collective intelligence. In the case of the collective intelligence of groups, this model suggests how a cacophony of incoherent opinions in a large group might be combined into coherent collective reasoning by a hypothetical platform called “general collective intelligence” (GCI). When applied to solving group problems, a GCI might be considered a system that leverages collective reasoning to increase the beneficial insights that might be derived from the information available to any group. This GCI model also suggests how the collective reasoning ability (intelligence) might be exponentially increased compared to the intelligence of any individual in a group, potentially resulting in what is predicted to be a collective superintelligence….(More)”

Can AI help governments clean out bureaucratic “Sludge”?


Blog by Abhi Nemani: “Government services often entail a plethora of paperwork and processes that can be exasperating and time-consuming for citizens. Whether it’s applying for a passport, filing taxes, or registering a business, chances are one has encountered some form of sludge.

Sludge is a term coined by Cass Sunstein, in his straightforward book, Sludge, a legal scholar and former administrator of the White House Office of Information and Regulatory Affairs, to describe unnecessarily effortful processes, bureaucratic procedures, and other barriers to desirable outcomes in government services…

So how can sludge be reduced or eliminated in government services? Sunstein suggests that one way to achieve this is to conduct Sludge Audits, which are systematic evaluations of the costs and benefits of existing or proposed sludge. He also recommends that governments adopt ethical principles and guidelines for the design and use of public services. He argues that by reducing sludge, governments can enhance the quality of life and well-being of their citizens.

One example of sludge reduction in government is the simplification and automation of tax filing in some countries. According to a study by the World Bank, countries that have implemented electronic tax filing systems have reduced the time and cost of tax compliance for businesses and individuals. The study also found that electronic tax filing systems have improved tax administration efficiency, transparency, and revenue collection. Some countries, such as Estonia and Chile, have gone further by pre-filling tax returns with information from various sources, such as employers, banks, and other government agencies. This reduces the burden on taxpayers to provide or verify data, and increases the accuracy and completeness of tax returns.

Future Opportunities for AI in Cutting Sludge

AI technology is rapidly evolving, and its potential applications are manifold. Here are a few opportunities for further AI deployment:

  • AI-assisted policy design: AI can analyze vast amounts of data to inform policy design, identifying areas of administrative burden and suggesting improvements.
  • Smart contracts and blockchain: These technologies could automate complex procedures, such as contract execution or asset transfer, reducing the need for paperwork.
  • Enhanced citizen engagement: AI could personalize government services, making them more accessible and less burdensome.

Key Takeaways:

  • AI could play a significant role in policy design, contract execution, and citizen engagement.
  • These technologies hold the potential to significantly reduce sludge…(More)”.

Three approaches to re-design digital public spaces 


Article by  Gianluca Sgueo: “The underlying tenet of so-called “human centred-design” is a public administration capable of delivering a satisfactory (even gratifying) digital experience to every user. Public services, however, are still marked by severe qualitative asymmetries, both nationally and supranationally. In this article we discuss the key shortcomings of digital public spaces, and we explore three approaches to re-design such spaces with the aim to widen the existing gaps separating the ideal from the actual rendering of human-centred digital government…(More)”.

Why picking citizens at random could be the best way to govern the A.I. revolution


Article by Hélène Landemore, Andrew Sorota, and Audrey Tang: “Testifying before Congress last month about the risks of artificial intelligence, Sam Altman, the OpenAI CEO behind the massively popular large language model (LLM) ChatGPT, and Gary Marcus, a psychology professor at NYU famous for his positions against A.I. utopianism, both agreed on one point: They called for the creation of a government agency comparable to the FDA to regulate A.I. Marcus also suggested scientific experts should be given early access to new A.I. prototypes to be able to test them before they are released to the public.

Strikingly, however, neither of them mentioned the public, namely the billions of ordinary citizens around the world that the A.I. revolution, in all its uncertainty, is sure to affect. Don’t they also deserve to be included in decisions about the future of this technology?

We believe a global, democratic approach–not an exclusively technocratic one–is the only adequate answer to what is a global political and ethical challenge. Sam Altman himself stated in an earlier interview that in his “dream scenario,” a global deliberation involving all humans would be used to figure out how to govern A.I.

There are already proofs of concept for the various elements that a global, large-scale deliberative process would require in practice. By drawing on these diverse and complementary examples, we can turn this dream into a reality.

Deliberations based on random selection have grown in popularity on the local and national levels, with close to 600 cases documented by the OECD in the last 20 years. Their appeal lies in capturing a unique array of voices and lived experiences, thereby generating policy recommendations that better track the preferences of the larger population and are more likely to be accepted. Famous examples include the 2012 and 2016 Irish citizens’ assemblies on marriage equality and abortion, which led to successful referendums and constitutional change, as well as the 2019 and 2022 French citizens’ conventions on climate justice and end-of-life issues.

Taiwan has successfully experimented with mass consultations through digital platforms like Pol.is, which employs machine learning to identify consensus among vast numbers of participants. Digitally engaged participation has helped aggregate public opinion on hundreds of polarizing issues in Taiwan–such as regulating Uber–involving half of its 23.5 million people. Digital participation can also augment other smaller-scale forms of citizen deliberations, such as those taking place in person or based on random selection…(More)”.

Artificial Intelligence for Emergency Response


Paper by Ayan Mukhopadhyay: “Emergency response management (ERM) is a challenge faced by communities across the globe. First responders must respond to various incidents, such as fires, traffic accidents, and medical emergencies. They must respond quickly to incidents to minimize the risk to human life. Consequently, considerable attention has been devoted to studying emergency incidents and response in the last several decades. In particular, data-driven models help reduce human and financial loss and improve design codes, traffic regulations, and safety measures. This tutorial paper explores four sub-problems within emergency response: incident prediction, incident detection, resource allocation, and resource dispatch. We aim to present mathematical formulations for these problems and broad frameworks for each problem. We also share open-source (synthetic) data from a large metropolitan area in the USA for future work on data-driven emergency response…(More)”.

Open Data on GitHub: Unlocking the Potential of AI


Paper by Anthony Cintron Roman, Kevin Xu, Arfon Smith, Jehu Torres Vega, Caleb Robinson, Juan M Lavista Ferres: “GitHub is the world’s largest platform for collaborative software development, with over 100 million users. GitHub is also used extensively for open data collaboration, hosting more than 800 million open data files, totaling 142 terabytes of data. This study highlights the potential of open data on GitHub and demonstrates how it can accelerate AI research. We analyze the existing landscape of open data on GitHub and the patterns of how users share datasets. Our findings show that GitHub is one of the largest hosts of open data in the world and has experienced an accelerated growth of open data assets over the past four years. By examining the open data landscape on GitHub, we aim to empower users and organizations to leverage existing open datasets and improve their discoverability — ultimately contributing to the ongoing AI revolution to help address complex societal issues. We release the three datasets that we have collected to support this analysis as open datasets at this https URL…(More)”

Ethical Considerations Towards Protestware


Paper by Marc Cheong, Raula Gaikovina Kula, and Christoph Treude: “A key drawback to using a Open Source third-party library is the risk of introducing malicious attacks. In recently times, these threats have taken a new form, when maintainers turn their Open Source libraries into protestware. This is defined as software containing political messages delivered through these libraries, which can either be malicious or benign. Since developers are willing to freely open-up their software to these libraries, much trust and responsibility are placed on the maintainers to ensure that the library does what it promises to do. This paper takes a look into the possible scenarios where developers might consider turning their Open Source Software into protestware, using an ethico-philosophical lens. Using different frameworks commonly used in AI ethics, we explore the different dilemmas that may result in protestware. Additionally, we illustrate how an open-source maintainer’s decision to protest is influenced by different stakeholders (viz., their membership in the OSS community, their personal views, financial motivations, social status, and moral viewpoints), making protestware a multifaceted and intricate matter…(More)”

Computer: A History of the Information Machine


Updated edition of book by Martin Campbell-Kelly, William Aspray, Nathan Ensmenger, Jeffrey R. Yost; “…traces the history of the computer and shows how business and government were the first to explore its unlimited, information-processing potential. Old-fashioned entrepreneurship combined with scientific know-how inspired now famous computer engineers to create the technology that became IBM. Wartime needs drove the giant ENIAC, the first fully electronic computer. Later, the PC enabled modes of computing that liberated people from room-sized, mainframe computers.

This third edition provides updated analysis on software and computer networking, including new material on the programming profession, social networking, and mobile computing. It expands its focus on the IT industry with fresh discussion on the rise of Google and Facebook as well as how powerful applications are changing the way we work, consume, learn, and socialize. Computer is an insightful look at the pace of technological advancement and the seamless way computers are integrated into the modern world. Through comprehensive history and accessible writing, Computer is perfect for courses on computer history, technology history, and information and society, as well as a range of courses in the fields of computer science, communications, sociology, and management…(More)”.

How existential risk became the biggest meme in AI


Article by Will Douglas Heaven: “Who’s afraid of the big bad bots? A lot of people, it seems. The number of high-profile names that have now made public pronouncements or signed open letters warning of the catastrophic dangers of artificial intelligence is striking.

Hundreds of scientists, business leaders, and policymakers have spoken up, from deep learning pioneers Geoffrey Hinton and Yoshua Bengio to the CEOs of top AI firms, such as Sam Altman and Demis Hassabis, to the California congressman Ted Lieu and the former president of Estonia Kersti Kaljulaid.

The starkest assertion, signed by all those figures and many more, is a 22-word statement put out two weeks ago by the Center for AI Safety (CAIS), an agenda-pushing research organization based in San Francisco. It proclaims: “Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war.”

The wording is deliberate. “If we were going for a Rorschach-test type of statement, we would have said ‘existential risk’ because that can mean a lot of things to a lot of different people,” says CAIS director Dan Hendrycks. But they wanted to be clear: this was not about tanking the economy. “That’s why we went with ‘risk of extinction’ even though a lot of us are concerned with various other risks as well,” says Hendrycks.

We’ve been here before: AI doom follows AI hype. But this time feels different. The Overton window has shifted. What were once extreme views are now mainstream talking points, grabbing not only headlines but the attention of world leaders. “The chorus of voices raising concerns about AI has simply gotten too loud to be ignored,” says Jenna Burrell, director of research at Data and Society, an organization that studies the social implications of technology.

What’s going on? Has AI really become (more) dangerous? And why are the people who ushered in this tech now the ones raising the alarm?   

It’s true that these views split the field. Last week, Yann LeCun, chief scientist at Meta and joint recipient with Hinton and Bengio of the 2018 Turing Award, called the doomerism “preposterously ridiculous.” Aidan Gomez, CEO of the AI firm Cohere, said it was “an absurd use of our time.”

Others scoff too. “There’s no more evidence now than there was in 1950 that AI is going to pose these existential risks,” says Signal president Meredith Whittaker, who is cofounder and former director of the AI Now Institute, a research lab that studies the social and policy implications of artificial intelligence. “Ghost stories are contagious—it’s really exciting and stimulating to be afraid.”

“It is also a way to skim over everything that’s happening in the present day,” says Burrell. “It suggests that we haven’t seen real or serious harm yet.”…(More)”.

Collective Intelligence to Co-Create the Cities of the Future: Proposal of an Evaluation Tool for Citizen Initiatives


Paper by Fanny E. Berigüete, Inma Rodriguez Cantalapiedra, Mariana Palumbo and Torsten Masseck: “Citizen initiatives (CIs), through their activities, have become a mechanism to promote empowerment, social inclusion, change of habits, and the transformation of neighbourhoods, influencing their sustainability, but how can this impact be measured? Currently, there are no tools that directly assess this impact, so our research seeks to describe and evaluate the contributions of CIs in a holistic and comprehensive way, respecting the versatility of their activities. This research proposes an evaluation system of 33 indicators distributed in 3 blocks: social cohesion, urban metabolism, and transformation potential, which can be applied through a questionnaire. This research applied different methods such as desk study, literature review, and case study analysis. The evaluation of case studies showed that the developed evaluation system well reflects the individual contribution of CIs to sensitive and important aspects of neighbourhoods, with a lesser or greater impact according to the activities they carry out and the holistic conception they have of sustainability. Further implementation and validation of the system in different contexts is needed, but it is a novel and interesting proposal that will favour decision making for the promotion of one or another type of initiative according to its benefits and the reality and needs of the neighbourhood…(More)”.