The GovLab Selected Readings on Blockchain Technologies and the Governance of Extractives


Curation by Andrew Young, Anders Pedersen, and Stefaan G. Verhulst

Readings developed together with NRGI, within the context of our joint project on Blockchain technologies and the Governance of Extractives. Thanks to Joyce Zhang and Michelle Winowatan for research support.

We need your help! Please share any additional readings on the use of Blockchain Technologies in the Extractives Sector with blockchange@thegovlab.org.  

Introduction

By providing new ways to securely identify individuals and organizations, and record transactions of various types in a distributed manner, blockchain technologies have been heralded as a new tool to address information asymmetries, establish trust and improve governance – particularly around the extraction of oil, gas and other natural resources. At the same time, blockchain technologies are been experimented with to optimize certain parts of the extractives value chain – potentially decreasing transparency and accountability while making governance harder to implement.

Across the expansive and complex extractives sector, blockchain technologies are believed to have particular potential for improving governance in three key areas:  

  • Beneficial ownership and illicit flows screening: The identity of those who benefit, through ownership, from companies that extract natural resources is often hidden – potentially contributing to tax evasion, challenges to global sanction regimes, corruption and money laundering.
  • Land registration, licensing and contracting transparency: To ensure companies extract resources responsibly and comply with rules and fee requirements, effective governance and a process to determine who has the rights to extract natural resources, under what conditions, and who is entitled to the land is essential.
  • Commodity trading and supply chain transparency: The commodity trading sector is facing substantive challenges in assessing and verifying the authenticity of for example oil trades. Costly time is spent by commodity traders reviewing documentation of often poor quality. The expectation of the sector is firstly to eliminate time spent verifying the authenticity of traded goods and secondly to reduce the risk premium on trades. Transactions from resources and commodities trades are often opaque and secretive, allowing for governments and companies to conceal how much money they receive from trading, and leading to corruption and evasion of taxation.

In the below we provide a selection of the nascent but growing literature on Blockchain Technologies and Extractives across six categories:

Selected Readings 

Blockchain Technologies and Extractives – Promise and Current Potential

Adams, Richard, Beth Kewell, Glenn Parry. “Blockchain for Good? Digital Ledger Technology and Sustainable Development Goals.” Handbook of Sustainability and Social Science Research. October 27, 2017.

  • This chapter in the Handbook of Sustainability and Social Science Research seeks to reflect and explore the different ways Blockchain for Good (B4G) projects can provide social and environmental benefits under the UN’s Sustainable Goals framework
  • The authors describe the main categories in which blockchain can achieve social impact: mining/consensus algorithms that reward good behavior, benefits linked to currency use in the form of “colored coins,” innovations in supply chain, innovations in government, enabling the sharing economy, and fostering financial inclusion.
  • The chapter concludes that with B4G there is also inevitably “Blockchain for Bad.” There is already critique and failures of DLTs such as the DAO, and more research must be done to identify whether DLTs can provide a more decentralized, egalitarian society, or if they will ultimately be another tool for control and surveillance by organizations and government.

Cullinane, Bernadette, and Randy Wilson. “Transforming the Oil and Gas Industry through Blockchain.” Official Journal of the Australian Institute of Energy News, p 9-10, December 2017.

  • In this article, Cullinane and Wilson explore blockchain’s application in the oil and gas industry “presents a particularly compelling opportunity…due to the high transactional values, associated risks and relentless pressure to reduce costs.”
  • The authors elaborate four areas where blockchain can benefit play a role in transforming the oil and gas industry:
    • Supply chain management
    • Smart contracts
    • Record management
    • Cross-border payments

Da Silva, Filipe M., and Ankita Jaitly. “Blockchain in Natural Resources: Hedging Against Volatile Prices.” Tata Consultancy Services Ltd., 2018.

  • The authors of this white paper assess the readiness of natural resources industries for blockchain technology application, identify areas where blockchain can add value, and outline a strategic plan for its adoption.
  • In particular, they highlight the potential for blockchain in the oil and gas industry to simplify payments, where for example, gas can be delivered directly to consumer homes using a blockchain smart contracting application.

Halford-Thompson, Guy. “Powered by Blockchain: Reinventing Information Management in the Energy Space.” BTL, May 12, 2017.

  • According to Halford-Thompson, “oil and gas companies are exploring blockchain’s promise to revamp inefficient internal processes and achieve significant reductions in operating costs through the automation of record keeping and messaging, the digitization of the supply chain information flow, and the elimination of reconciliation, among many other data management use cases.”
  • The data reconciliation process, for one, is complex and can require significant time for completion. Blockchain technology could not only remove the need for some steps in the information reconciliation process, but also eliminate the need for reconciliation altogether in some instances.

Blockchain Technologies and the Governance of Extractives

(See also: Selected Readings of Blockchain Technologies and its Potential to Transform Governance)

Koeppen, Mark, David Shrier, and Morgan Bazilian. “Is Blockchain’s Future in Oil and Gas Transformative Or Transient? Deloitte, 2017.

  • In this report, the authors propose four areas that blockchain can improve for the oil and gas industry, which are:
    • Transparency and compliance: Employment of blockchain is predicted to significantly reduce cost related to compliance, since it securely makes information available to all parties involved in the supply chain.
    • Cyber threats and security: The industry faces constant digital security threat and blockchain provides a solution to address this issue.
    • Mid-volume trading/third party impacts: They argue that the “boundaries between asset classes will blur as cash, energy products and other commodities, from industrial components to apples could all become digital assets trading interoperably.”
    • Smart contract: Since the “sheer size and volume of contracts and transactions to execute capital projects in oil and gas have historically caused significant reconciliation and tracking issues among contractors, sub-contractors, and suppliers,” blockchain-enabled smart contracts could improve the process by executing automatically after all requirements are met, and boosting contract efficiency and protecting each party from volatile pricing.

Mawet, Pierre, and Michael Insogna. “Unlocking the Potential of Blockchain in Oil and Gas Supply Chains.” Accenture Energy Blog, November 21, 2016.

  • The authors propose three ways blockchain technology can boost productivity and efficiency in oil and gas industry:
    • “Greater process efficiency. Smart contracts, for example, can be held in a blockchain transaction with party compliance confirmed through follow-on transactions, reducing third-party supervision and paper-based contracting, thus helping reduce cost and overhead.”
    • “Compliance. Visibility is essential to improve supply chain performance. The immutable record of transactions can aid in product traceability and asset tracking.”
    • “Data transfer from IoT sensors. Blockchain could be used to track the unique history of a device, with the distributed ledger recording data transfer from multiple sensors. Data security in devices could be safeguarded by unique blockchain characteristics.”

Som, Indranil. “Blockchain: Radically Changing the Mining Paradigm.” Digitalist, September 27, 2017.

  • In this article, Som proposes three ways that the blockchain technology can “support leaner organizations and increased security” in the mining industry: improving cybersecurity, increasing transparency through smart contracts, and providing visibility into the supply chain.

Identity: Beneficial Ownership and Illicit Flows

(See also: Selected Readings on Blockchain Technologies and Identity).

de Jong, Julia, Alexander Meyer, and Jeffrey Owens. “Using blockchain for transparent beneficial ownership registers. International Tax Review, June 2017.

  • This paper discusses the features of blockchain and distributed ledger technology that can improve collection and distribution of information on beneficial ownership.
  • The FATF and OECD Global Forum regimes have identified a number of common problems related to beneficial ownership information across all jurisdictions, including:
    • “Insufficient accuracy and accessibility of company identification and ownership information;
    • Less rigorous implementation of customer due-diligence (CDD) measures by key gatekeepers such as lawyers, accountants, and trust and company service providers; and
    • Obstacles to information sharing such as data protection and privacy laws, which impede competent authorities from receiving timely access to adequate, accurate and up-to-date information on basic legal and beneficial ownership.”
  • The authors argue that the transparency, immutability, and security offered by blockchain makes it ideally suited for record-keeping, particularly with regards to the ownership of assets. Thus, blockchain can address many of the shortcomings in the current system as identified by the FATF and the OECD.
  • They go on to suggest that a global registry of beneficial ownership using blockchain technology would offer the following benefits:
    • Ensuring real-time accuracy and verification of ownership information
    • Increasing security and control over sensitive personal and commercial information
    • Enhancing audit transparency
    • Creating the potential for globally-linked registries
    • Reducing corruption and fraud, and increasing trust
    • Reducing compliance burden for regulate entities

Herian, Robert. “Trusteeship in a Post-Trust World: Property, Trusts Law and the Blockchain.” The Open University, 2016.

  • This working paper discusses the often overlooked topic of trusteeship and trusts law and the implications of blockchain technology in the space. 
  • “Smart trusts” on the blockchain will distribute trusteeship across a network and, in theory, remove the need for continuous human intervention in trust fund investments thus resolving key issues around accountability and the potential for any breach of trust.
  • Smart trusts can also increase efficiency and security of transactions, which could improve the overall performance of the investment strategy, thereby creating higher returns for beneficiaries.

Karsten, Jack and Darrell M. West (2018): “Venezuela’s “petro” undermines other cryptocurrencies – and international sanctions.” Brookings, Friday, March 9 2018,

  • This article discusses the Venezuelan government’s cryptocurrency, “petro,” which was launched as a solution to the country’s economic crisis and near-worthless currency, “bolívar”
  • Unlike the volatility of other cryptocurrencies such as Bitcoin and Litecoin, one petro’s price is pegged to the price of one barrel of Venezuelan oil – roughly $60
  • And rather than decentralizing control like most blockchain applications, the petro is subject to arbitrary discount factor adjustment, fluctuating oil prices, and a corrupt government known for manipulating its currency
  • The authors warn the petro will not stabilize the Venezuelan economy since only foreign investors funded the presale, yet (from the White Paper) only Venezuelan citizens can use the cryptocurrency to pay taxes, fees, and other expenses. Rather, they argue, the petro represents an attempt to create foreign capital out of “thin air,” which is not subject to traditional economic sanctions.  

Land Registration, Licensing and Contracting Transparency

Michael Graglia and Christopher Mellon. “Blockchain and Property in 2018: At the End of the Beginning.” 2018 World Bank Conference on Land and Poverty, March 19-23, 2018.

  • This paper claims “blockchain makes sense for real estate” because real estate transactions depend on a number of relationships, processes, and intermediaries that must reconcile all transactions and documents for an action to occur. Blockchain and smart contracts can reduce the time and cost of transactions while ensuring secure and transparent record-keeping systems.
  • The ease, efficiency, and security of transactions can also create an “international market for small real estate” in which individuals who cannot afford an entire plot of land can invest small amounts and receive their portion of rental payments automatically through smart contracts.
  • The authors describe seven prerequisites that land registries must fulfill before blockchain can be introduced successfully: accurate data, digitized records, an identity solution, multi-sig wallets, a private or hybrid blockchain, connectivity and a tech aware population, and a trained professional community
  • To achieve the goal of an efficient and secure property registry, the authors propose an 8-level progressive framework through which registries slowly integrate blockchain due to legal complexity of land administration, resulting inertia of existing processes, and high implementation costs.  
    • Level 0 – No Integration
    • Level 1 – Blockchain Recording
    • Level 2 – Smart Workflow
    • Level 3 – Smart Escrow
    • Level 4 – Blockchain Registry
    • Level 5 – Disaggregated Rights
    • Level 6 – Fractional Rights
    • Level 7 – Peer-to-Peer Transactions
    • Level 8 – Interoperability

Thomas, Rod. “Blockchain’s Incompatibility for Use as a Land Registry: Issues of Definition, Feasibility and Risk. European Property Law Journal, vol. 6, no. 3, May 2017.

  • Thomas argues that blockchain, as it is currently understood and defined, is unsuited for the transfer of real property rights because it fails to address the need for independent verification and control.
  • Under a blockchain-based system, coin holders would be in complete control of the recordation of the title interests of their land, and thus, it would be unlikely that they would report competing or contested claims.
  • Since land remains in the public domain, the risk of third party possessory title claims are likely to occur; and over time, these risks will only increase exponentially.
  • A blockchain-based land title represents interlinking and sequential transactions over many hundreds, if not thousands, of years, so given the misinformation that would compound over time, it would be difficult to trust the current title holder has a correctly recorded title
  • The author concludes that supporters of blockchain for land registries frequently overlook a registry’s primary function to provide an independent verification of the provenance of stored data.

Vos, Jacob, Christiaan Lemmen, and Bert Beentjes. “Blockchain-Based Land Registry: Panacea, Illusion or Something In Between? 2017 World Bank Conference on Land and Poverty, March 20-24, 2017.

  • The authors propose that blockchain is best suited for the following steps in land administration:
    • The issuance of titles
    • The archiving of transactions – specifically in countries that do not have a reliable electronic system of transfer of ownership
  • The step in between issuing titles and archiving transactions is the most complex – the registration of the transaction. This step includes complex relationships between the “triple” of land administration: rights (right in rem and/or personal rights), object (spatial unit), and subject (title holder). For the most part, this step is done manually by registrars, and it is questionable whether blockchain technology, in the form of smart contracts, will be able to process these complex transactions.
  • The authors conclude that one should not underestimate the complexity of the legal system related to land administration. The standardization of processes may be the threshold to success of blockchain-based land administration. The authors suggest instead of seeking to eliminate one party from the process, technologists should cooperate with legal and geodetic professionals to create a system of checks and balances to successfully implement blockchain for land administration.  
  • This paper also outlines five blockchain-based land administration projects launched in Ghana, Honduras, Sweden, Georgia, and Cook County, Illinois.

Commodity Trading and Supply Chain Transparency

Ahmed, Shabir. “Leveraging Blockchain to Revolutionise the Mining Industry.” SAP News, February 27, 2018.

  • In this article, Ahmed identifies seven key use cases for blockchain in the mining industry:
    • Automation of ore acquisition and transfer;
    • Automatic registration of mineral rights and IP;
    • Visibility of ore inventory at ports;
    • Automatic cargo hire process;
    • Process and secure large amounts of IoT data;
    • Reconciling amount produced and sent for processing;
    • Automatically execute procurement and other contracts.

Brooks, Michael. “Blockchain and the Fight Against Illicit Financial Flows.” The Policy Corner, February 19, 2018.

  • In this article, Brooks argues that, “Because of the inherent decentralization and immutability of data within blockchains, it offers a unique opportunity to bypass traditional tracking and transparency initiatives that require strong central governance and low levels of corruption. It could, to a significant extent, bypass the persistent issues of authority and corruption by democratizing information around data consensus, rather than official channels and occasional studies based off limited and often manipulated information. Within the framework of a coherent policy initiative that integrates all relevant stakeholders (states, transnational organizations, businesses, NGOs, other monitors and oversight bodies), a international supply chains supported by blockchain would decrease the ease with which resources can be hidden, numbers altered, and trade misinvoiced.”

Conflict Free Natural Resources.” Global Opportunity Report 2017. Global Opportunity Network, 2017.

  • In this entry from the Global Opportunity Report, and specifically toward the end of ensuring conflict-free natural resources, Blockchain is labeled as “well-suited for tracking objects and transactions, making it possible for virtually anything of value to be traced. This opportunity is about creating transparency and product traceability in supply chains.

Blockchain for Traceability in Minerals and Metals Supply Chains: Opportunities and Challenges.” RCS Global and ICMM, 2017.

  • This report is based on insights generated during the Materials Stewardship Round Table on the potential of BCTs for tracking and tracing metals and minerals supply chains, which subsequently informed an RCS Global research initiative on the topic.
  • Insight into two key areas is increasingly desired by downstream manufacturing companies from upstream producers of metals and minerals: provenance and production methods
  • In particular, the report offers five key potential advantages of using Blockchain for mineral and metal supply chain activities:
    • “Builds consensus and trust around responsible production standards between downstream and upstream companies.
    • The immutability of and decentralized control over a blockchain system minimizes the risk of fraud.
    • Defined datasets can be made accessible in real time to any third party, including downstream buyers, auditors, investors, etc. but at the same time encrypted so as to share a proof of fact rather than confidential information.
    • A blockchain system can be easily scaled to include other producers and supply chains beyond those initially involved.
    • Cost reduction due to the paperless nature of a blockchain-enabled CoC [Chain of Custody] system, the potential reduction of audits, and reduction in transaction costs.”

Van Bockstael, Steve. “The emergence of conflict-free, ethical, and Fair Trade mineral supply chain certification systems: A brief introduction.” The Extractives Industries and Society, vol. 5, issue 1, January 2018.

  • This introduction to a special section considers the emerging field of “‘conflict-free’, ‘fair’ and ‘transparently sourced and traded’ minerals” in global industry supply chains.
  • Van Bockstael describes three areas of practice aimed at increasing supply chain transparency:
    • “Initiatives that explicitly try to sever the links between mining or minerals trading and armed conflict of the funding thereof.”
    • “Initiatives, limited in number yet growing, that are explicitly linked to the internationally recognized ‘Fair Trade’ movement and whose aim it is to source artisanally mined minerals for the Western jewellry industry.”
    • “Initiatives that aim to provide consumers or consumer-facing industries with more ethical, transparent and fair supply chains (often using those concepts in fuzzy and interchangeable ways) that are not linked to the established Fair Trade movement” – including, among others, initiatives using Blockchain technology “to create tamper-proof supply chains.”

Global Governance, Standards and Disclosure Practices

Lafarre, Anne and Christoph Van der Elst. “Blockchain Technology for Corporate Governance and Shareholder Activism.” European Corporate Governance Institute (ECGI) – Law Working Paper No. 390/2018, March 8, 2018.

  • This working paper focuses on the potential benefits of leveraging Blockchain during functions involving shareholder and company decision making. Lafarre and Van der Elst argue that “Blockchain technology can lower shareholder voting costs and the organization costs for companies substantially. Moreover, blockchain technology can increase the speed of decision-making, facilitate fast and efficient involvement of shareholders.”
  • The authors argue that in the field of corporate governance, Blockchain offers two important elements: “transparency – via the verifiable way of recording transactions – and trust – via the immutability of these transactions.”
  • Smart contracting, in particular, is seen as a potential avenue for facilitating the ‘agency relationship’ between board members and the shareholders they represent in corporate decision-making processes.

Myung, San Jun. “Blockchain government – a next for of infrastructure for the twenty-first century.” Journal of Open Innovation: Technology, Market, and Complexity, December 2018.

  • This paper argues the idea that Blockchain represents a new form of infrastructure that, given its core consensus mechanism, could replace existing social apparatuses including bureaucracy.
  • Indeed, Myung argues that blockchain and bureaucracy share a number of attributes:
    • “First, both of them are defined by the rules and execute predetermined rules.
    • Second, both of them work as information processing machines for society.
    • Third, both of them work as trust machines for society.”  
  • The piece concludes with five principles for replacing bureaucracy with blockchain for social organization: “1) introducing Blockchain Statute law; 2) transparent disclosure of data and source code; 3) implementing autonomous executing administration; 4) building a governance system based on direct democracy; and 5) making Distributed Autonomous Government (DAG).  

Peters, Gareth and Vishnia, Guy (2016): “Blockchain Architectures for Electronic Exchange Reporting Requirements: EMIR, Dodd Frank, MiFID I/II, MiFIR, REMIT, Reg NMS and T2S.” University College London, August 31, 2016.

  • This paper offers a solution based on blockchain architectures to the regulations of financial exchanges around the world for trade processing and reporting for execution and clearing. In particular, the authors give a detailed overview of EMIR, Dodd Frank, MiFID I/II, MiFIR, REMIT, Reg NMS and T2S.
  • The authors suggest the increasing amount of data from transaction reporting start to be incorporated on a blockchain ledger in order to harness the built-in security and immutability features of the blockchain to support key regulatory features.
  • Specifically, the authors suggest 1) a permissioned blockchain controlled by a regulator or a consortium of market participants for the maintenance of identity data from market participants and 2) blockchain frameworks such as Enigma to be used to facilitate required transparency and reporting aspects related to identities when performing pre- and post-trade reporting as well as for auditing.

Blockchain Technology and Competition Policy – Issues paper by the Secretariat,” OECD, June 8, 2018.

  • This OECD issues paper poses two key questions about how blockchain technology might increase the relevance of new disclosures practices:
    • “Should competition agencies be given permission to access blockchains? This might enable them to monitor trading prices in real-time, spot suspicious trends, and, when investigating a merger, conduct or market have immediate access to the necessary data without needing to impose burdensome information requests on parties.”
    • “Similarly, easy access to the information on a blockchain for a firm’s owners and head offices would potentially improve the effectiveness of its oversight on its own subsidiaries and foreign holdings. Competition agencies may assume such oversight already exists, but by making it easier and cheaper, a blockchain might make it more effective, which might allow for more effective centralised compliance programmes.”

Michael Pisa and Matt Juden. “Blockchain and Economic Development: Hype vs. Reality.” Center for Global Development Policy Paper, 2017.

  • In this Center for Global Development Policy Paper, the authors examine blockchain’s potential to address four major development challenges: (1) facilitating faster and cheaper international payments, (2) providing a secure digital infrastructure for verifying identity, (3) securing property rights, and (4) making aid disbursement more secure and transparent.
  • The authors conclude that while blockchain may be well suited for certain use cases, the majority of constraints in blockchain-based projects fall outside the scope of technology. Common constraints such as data collection and privacy, governance, and operational resiliency must be addressed before blockchain can be successfully implemented as a solution.

Industry-Specific Case Studies

Chohan, Usman. “Blockchain and the Extractive Industries: Cobalt Case Study,” University of New South Wales, Canberra Discussion Paper Series: Notes on the 21st Century, 2018.

  • In this discussion paper, the author studies the pilot use of blockchain in cobalt mining industry in the Democratic Republic of Congo (DRC). The project tracked the movement of cobalt from artisanal mines through its installation in devices such as smartphones and electric cars.
  • The project records cobalt attributes – weights, dates, times, images, etc. – into the digital ledger to help ensure that cobalt purchases are not contributing to forced child labor or conflict minerals. 

Chohan, Usman. “Blockchain and the Extractive Industries #2: Diamonds Case Study,” University of New South Wales, Canberra Discussion Paper Series: Notes on the 21st Century, 2018.

  • The second case study from Chohan investigates the application of blockchain technology in the extractive industry by studying Anglo-American (AAL) diamond DeBeer’s unit and Everledger’s blockchain projects. 
  • In this study, the author finds that AAL uses blockchain to track gems (carat, color, certificate numbers), starting from extraction and onwards, including when the gems change hands in trade transaction.
  • Like the cobalt pilot, the AAL initiative aims to help avoid supporting conflicts and forced labor, and to improve trading accountability and transparency more generally.

EU ministers endorse Commission’s plans for research cloud


European Commission: “The European Open Science Cloud, which will support EU science in its global leading by creating a trusted environment for hosting and processing research data, is one important step closer to becoming a reality. Meeting in Brussels today, EU research ministers endorsed the roadmap for its creation. The Conclusions of the Competitiveness Council, proposed by the current Bulgarian Presidency of the Council of the EU, are the result of two years of intense negotiations….

According to Commissioner Moedas, much remains to be done to make the EOSC a reality by 2020, but several important aspects stand out:

  1. the Cloud should be a wide, pan-European federation of existing and emerging excellent infrastructures, which respects the governance and funding mechanisms of its components;
  2. membership in this federation would be voluntary; and
  3. the governance structure would include member state ministries, stakeholders and scientists.

 

…In another important step for Open Science, the Commission published today the final recommendations of the Open Science Policy Platform. Established in 2016, the platform comprises important stakeholders who advise the Commission on how to further develop and practically implement Open Science policy in order to improve radically the quality and impact of European science….(More)”.

Mapping the economy in real time is almost ‘within our grasp’


Delphine Strauss at the Financial Times: “The goal of mapping economic activity in real time, just as we do for weather or traffic, is “closer than ever to being within our grasp”, according to Andy Haldane, the Bank of England’s chief economist. In recent years, “data has become the new oil . . . and data companies have become the new oil giants”, Mr Haldane told an audience at King’s Business School …

But economics and finance have been “rather reticent about fully embracing this oil-rush”, partly because economists have tended to prefer a deductive approach that puts theory ahead of measurement. This needs to change, he said, because relying too much on either theory or real-world data in isolation can lead to serious mistakes in policymaking — as was seen when the global financial crisis exposed the “empirical fragility” of macroeconomic models.

Parts of the private sector and academia have been far swifter to exploit the vast troves of ever-accumulating data now available — 90 per cent of which has been created in the last two years alone. Massachusetts Institute of Technology’s “Billion Prices Project”, name-checked in Mr Haldane’s speech, now collects enough data from online retailers for its commercial arm to provide daily inflation updates for 22 economies….

The UK’s Office for National Statistics — which has faced heavy criticism over the quality of its data in recent years — is experimenting with “web-scraping” to collect price quotes for food and groceries, for example, and making use of VAT data from small businesses to improve its output-based estimates of gross domestic product. In both cases, the increased sample size and granularity could bring considerable benefits on top of existing surveys, Mr Haldane said.

The BoE itself is trying to make better use of financial data — for example, by using administrative data on owner-occupied mortgages to better understand pricing decisions in the UK housing market. Mr Haldane sees scope to go further with the new data coming on stream on payment, credit and banking flows. …New data sources and techniques could also help policymakers think about human decision-making — which rarely conforms with the rational process assumed in many economic models. Data on music downloads from Spotify, used as an indicator of sentiment, has recently been shown to do at least as well as a standard consumer confidence survey in tracking consumer spending….(More)”.

How the Math Men Overthrew the Mad Men


 in the New Yorker: “Once, Mad Men ruled advertising. They’ve now been eclipsed by Math Men—the engineers and data scientists whose province is machines, algorithms, pureed data, and artificial intelligence. Yet Math Men are beleaguered, as Mark Zuckerberg demonstrated when he humbled himself before Congress, in April. Math Men’s adoration of data—coupled with their truculence and an arrogant conviction that their “science” is nearly flawless—has aroused government anger, much as Microsoft did two decades ago.

The power of Math Men is awesome. Google and Facebook each has a market value exceeding the combined value of the six largest advertising and marketing holding companies. Together, they claim six out of every ten dollars spent on digital advertising, and nine out of ten new digital ad dollars. They have become more dominant in what is estimated to be an up to two-trillion-dollar annual global advertising and marketing business. Facebook alone generates more ad dollars than all of America’s newspapers, and Google has twice the ad revenues of Facebook.

In the advertising world, Big Data is the Holy Grail, because it enables marketers to target messages to individuals rather than general groups, creating what’s called addressable advertising. And only the digital giants possess state-of-the-art Big Data. “The game is no longer about sending you a mail order catalogue or even about targeting online advertising,” Shoshana Zuboff, a professor of business administration at the Harvard Business School, wrote on faz.net, in 2016. “The game is selling access to the real-time flow of your daily life—your reality—in order to directly influence and modify your behavior for profit.” Success at this “game” flows to those with the “ability to predict the future—specifically the future of behavior,” Zuboff writes. She dubs this “surveillance capitalism.”

However, to thrash just Facebook and Google is to miss the larger truth: everyone in advertising strives to eliminate risk by perfecting targeting data. Protecting privacy is not foremost among the concerns of marketers; protecting and expanding their business is. The business model adopted by ad agencies and their clients parallels Facebook and Google’s. Each aims to massage data to better identify potential customers. Each aims to influence consumer behavior. To appreciate how alike their aims are, sit in an agency or client marketing meeting and you will hear wails about Facebook and Google’s “walled garden,” their unwillingness to share data on their users. When Facebook or Google counter that they must protect “the privacy” of their users, advertisers cry foul: You’re using the data to target ads we paid for—why won’t you share it, so that we can use it in other ad campaigns?…(More)”

On Dimensions of Citizenship


Introduction by Niall Atkinson, Ann Lui, and Mimi Zeiger to a Special Exhibit and dedicated set of Essays: “We begin by defining citizenship as a cluster of rights, responsibilities, and attachments, and by positing their link to the built environment. Of course architectural examples of this affiliation—formal articulations of inclusion and exclusion—can seem limited and rote. The US-Mexico border wall (“The Wall,” to use common parlance) dominates the cultural imagination. As an architecture of estrangement, especially when expressed as monolithic prototypes staked in the San Diego-Tijuana landscape, the border wall privileges the rhetorical security of nationhood above all other definitions of citizenship—over the individuals, ecologies, economies, and communities in the region. And yet, as political theorist Wendy Brown points out, The Wall, like its many counterparts globally, is inherently fraught as both a physical infrastructure and a nationalist myth, ultimately racked by its own contradictions and paradoxes.

Calling border walls across the world “an ad hoc global landscape of flows and barriers,” Brown writes of the paradoxes that riddle any effort to distinguish the nation as a singular, cohesive form: “[O]ne irony of late modern walling is that a structure taken to mark and enforce an inside/outside distinction—a boundary between ‘us’ and ‘them’ and between friend and enemy—appears precisely the opposite when grasped as part of a complex of eroding lines between the police and the military, subject and patria, vigilante and state, law and lawlessness.”1 While 2018 is a moment when ideologies are most vociferously cast in binary rhetoric, the lived experience of citizenship today is rhizomic, overlapping, and distributed. A person may belong and feel rights and responsibilities to a neighborhood, a voting district, remain a part of an immigrant diaspora even after moving away from their home country, or find affiliation on an online platform. In 2017, Blizzard Entertainment, the maker of World of Warcraft, reported a user community of 46 million people across their international server network. Thus, today it is increasingly possible to simultaneously occupy multiple spaces of citizenship independent from the delineation of a formal boundary.

Conflict often makes visible emergent spaces of citizenship, as highlighted by recent acts both legislative and grassroots. Gendered bathrooms act as renewed sites of civil rights debate. Airports illustrate the thresholds of national control enacted by the recent Muslim bans. Such clashes uncover old scar tissue, violent histories and geographies of spaces. The advance of the Keystone XL pipeline across South Dakota, for example, brought the fight for indigenous sovereignty to the fore.

If citizenship itself designates a kind of border and the networks that traverse and ultimately elude such borders, then what kind of architecture might Dimensions of Citizenship offer in lieu of The Wall? What designed object, building, or space might speak to the heart of what and how it means to belong today? The participants in the United States Pavilion offer several of the clear and vital alternatives deemed so necessary by Samuel R. Delany: The Cobblestone. The Space Station. The Watershed.

Dimensions of Citizenship argues that citizenship is indissociable from the built environment, which is exactly why that relationship can be the source for generating or supporting new forms of belonging. These new forms may be more mutable and ephemeral, but no less meaningful and even, perhaps, ultimately more equitable. Through commissioned projects, and through film, video artworks, and responsive texts, Dimensions of Citizenship exhibits the ways that architects, landscape architects, designers, artists, and writers explore the changing form of citizenship: the different dimensions it can assume (legal, social, emotional) and the different dimensions (both actual and virtual) in which citizenship takes place. The works are valuably enigmatic, wide-ranging, even elusive in their interpretations, which is what contemporary conditions seem to demand. More often than not, the spaces of citizenship under investigation here are marked by histories of inequality and the violence imposed on people, non-human actors, ecologies. Our exhibition features spaces and individuals that aim to manifest the democratic ideals of inclusion against the grain of broader systems: new forms of “sharing economy” platforms, the legacies of the Underground Railroad, tenuous cross-national alliances at the border region, or the seemingly Sisyphean task of buttressing coastline topologies against the rising tides….(More)”.

Crowdbreaks: Tracking Health Trends using Public Social Media Data and Crowdsourcing


Paper by Martin Mueller and Marcel Salath: “In the past decade, tracking health trends using social media data has shown great promise, due to a powerful combination of massive adoption of social media around the world, and increasingly potent hardware and software that enables us to work with these new big data streams.

At the same time, many challenging problems have been identified. First, there is often a mismatch between how rapidly online data can change, and how rapidly algorithms are updated, which means that there is limited reusability for algorithms trained on past data as their performance decreases over time. Second, much of the work is focusing on specific issues during a specific past period in time, even though public health institutions would need flexible tools to assess multiple evolving situations in real time. Third, most tools providing such capabilities are proprietary systems with little algorithmic or data transparency, and thus little buy-in from the global public health and research community.

Here, we introduce Crowdbreaks, an open platform which allows tracking of health trends by making use of continuous crowdsourced labelling of public social media content. The system is built in a way which automatizes the typical workflow from data collection, filtering, labelling and training of machine learning classifiers and therefore can greatly accelerate the research process in the public health domain. This work introduces the technical aspects of the platform and explores its future use cases…(More)”.

Smarter Crowdsourcing for Anti-Corruption: A Handbook of Innovative Legal, Technical, and Policy Proposals and a Guide to their Implementation


Paper by Noveck, Beth Simone; Koga, Kaitlin; Aceves Garcia, Rafael; Deleanu, Hannah; Cantú-Pedraza, Dinorah: “Corruption presents a fundamental threat to the stability and prosperity of Mexico and combating it demands approaches that are both principled and practical. In 2017, the Inter-American Development Bank (IDB) approved project ME-T1351 to support Mexico in its fight against corruption using Open Innovation. Thus, the IDB partnered with the Governance Lab at NYU to support Mexico’s Secretariat of Public Service (Secretaría de la Función Pública) to identify innovative ideas and then turns them into practical implementation plans for the measurement, detection, and prevention of corruption in Mexico using the GovLab’s open innovation methodology named Smarter Crowdsourcing.

The purpose of Smarter Crowdsourcing was to identify concrete solutions that include the use of data analysis and technology to tackle corruption in the public sector. This document contains 13 implementation plans laying out practical ways to address corruption. The plans emerged from “Smarter Crowdsourcing Anti-Corruption,” a method that is an agile process, which begins with robust problem definition followed by online sourcing of global expertise to surface innovative solutions. Smarter Crowdsourcing Anti-Corruption focused on six specific challenges: (i) measuring corruption and its costs, (ii) strengthening integrity in the judiciary, (iii) engaging the public in anti-corruption efforts, (iv) whistleblowing, (v) effective prosecution, and (vi) tracking and analyzing money flows…(More)”.

Playing Games While Building Savings


Corporate Insights: “Nearly half of all Americans play video games, yet only a third have more than a thousand dollars saved for an emergency. A new fintech startup called Blast hopes to combine the increasingly popular pastime with saving for the future. Unlike other attempts to gamify savings that create entirely new experiences, Blast works alongside existing games with three ways for users to increase their balances when they play: automated micro-deposits, mission rewards and weekly prizes. By linking to games that people already enjoy, Blast avoids the difficult task of creating a hit game to reach a wide audience.

Much like Acorns—co-founded by Blast’s creator, Walter Cruttenden—and other micro-savings apps that make small automatic deposits to users’ savings, Blast automatically moves small amounts into savings whenever users accomplish in-game tasks. These “triggers” are user-controlled and available for popular online games like League of Legends and Counter Strike: Global Offensive. For example, users can choose to deposit $1.00 every time they win a match or $0.10 every time they defeat an enemy player. The linked savings account provided by Wells Fargo earns 1.00% APY, and Blast can withdraw funds from a linked checking or PayPal account.

Blast partners with game publishers to reward users for playing their games, doling out set amounts to users who engage (or re-engage) with games made by its partners…(More)”. 

Help NASA create the world’s largest landslide database


EarthSky: “Landslides cause thousands of deaths and billions of dollars in property damage each year. Surprisingly, very few centralized global landslide databases exist, especially those that are publicly available.

Now NASA scientists are working to fill the gap—and they want your help collecting information. In March 2018, NASA scientist Dalia Kirschbaum and several colleagues launched a citizen science project that will make it possible to report landslides you have witnessed, heard about in the news, or found on an online database. All you need to do is log into the Landslide Reporter portal and report the time, location, and date of the landslide – as well as your source of information. You are also encouraged to submit additional details, such as the size of the landslide and what triggered it. And if you have photos, you can upload them.

Kirschbaum’s team will review each entry and submit credible reports to the Cooperative Open Online Landslide Repository (COOLR) — which they hope will eventually be the largest global online landslide catalog available.

Landslide Reporter is designed to improve the quantity and quality of data in COOLR. Currently, COOLR contains NASA’s Global Landslide Catalog, which includes more than 11,000 reports on landslides, debris flows, and rock avalanches. Since the current catalog is based mainly on information from English-language news reports and journalists tend to cover only large and deadly landslides in densely populated areas, many landslides never make it into the database….(More)”.

The promise and peril of military applications of artificial intelligence


Michael C. Horowitz at the Bulletin of the Atomic Scientists: “Artificial intelligence (AI) is having a moment in the national security space. While the public may still equate the notion of artificial intelligence in the military context with the humanoid robots of the Terminatorfranchise, there has been a significant growth in discussions about the national security consequences of artificial intelligence. These discussions span academia, business, and governments, from Oxford philosopher Nick Bostrom’s concern about the existential risk to humanity posed by artificial intelligence to Tesla founder Elon Musk’s concern that artificial intelligence could trigger World War III to Vladimir Putin’s statement that leadership in AI will be essential to global power in the 21st century.

What does this really mean, especially when you move beyond the rhetoric of revolutionary change and think about the real world consequences of potential applications of artificial intelligence to militaries? Artificial intelligence is not a weapon. Instead, artificial intelligence, from a military perspective, is an enabler, much like electricity and the combustion engine. Thus, the effect of artificial intelligence on military power and international conflict will depend on particular applications of AI for militaries and policymakers. What follows are key issues for thinking about the military consequences of artificial intelligence, including principles for evaluating what artificial intelligence “is” and how it compares to technological changes in the past, what militaries might use artificial intelligence for, potential limitations to the use of artificial intelligence, and then the impact of AI military applications for international politics.

The potential promise of AI—including its ability to improve the speed and accuracy of everything from logistics to battlefield planning and to help improve human decision-making—is driving militaries around the world to accelerate their research into and development of AI applications. For the US military, AI offers a new avenue to sustain its military superiority while potentially reducing costs and risk to US soldiers. For others, especially Russia and China, AI offers something potentially even more valuable—the ability to disrupt US military superiority. National competition in AI leadership is as much or more an issue of economic competition and leadership than anything else, but the potential military impact is also clear. There is significant uncertainty about the pace and trajectory of artificial intelligence research, which means it is always possible that the promise of AI will turn into more hype than reality. Moreover, safety and reliability concerns could limit the ways that militaries choose to employ AI…(More)”,