How Data Can Map and Make Racial Inequality More Visible (If Done Responsibly)


Reflection Document by The GovLab: “Racism is a systemic issue that pervades every aspect of life in the United States and around the world. In recent months, its corrosive influence has been made starkly visible, especially on Black people. Many people are hurting. Their rage and suffering stem from centuries of exclusion and from being subject to repeated bias and violence. Across the country, there have been protests decrying racial injustice. Activists have called upon the government to condemn bigotry and racism, to act against injustice, to address systemic and growing inequality.

Institutions need to take meaningful action to address such demands. Though racism is not experienced in the same way by all communities of color, policymakers must respond to the anxieties and apprehensions of Black people as well as those of communities of color more generally. This work will require institutions and individuals to reflect on how they may be complicit in perpetuating structural and systematic inequalities and harm and to ask better questions about the inequities that exist in society (laid bare in both recent acts of violence and in racial disadvantages in health outcomes during the ongoing COVID-19 crisis). This work is necessary but unlikely to be easy. As Rashida Richardson, Director of Policy Research at the AI Now Institute at NYU notes:

“Social and political stratifications also persist and worsen because they are embedded into our social and legal systems and structures. Thus, it is difficult for most people to see and understand how bias and inequalities have been automated or operationalized over time.”

We believe progress can be made, at least in part, through responsible data access and analysis, including increased availability of (disaggregated) data through data collaboration. Of course, data is only one part of the overall picture, and we make no claims that data alone can solve such deeply entrenched problems. Nonetheless, data can have an impact by making inequalities resulting from racism more quantifiable and inaction less excusable.

…Prioritizing any of these topics will also require increased community engagement and participatory agenda setting. Likewise, we are deeply conscious that data can have a negative as well as positive impact and that technology can perpetuate racism when designed and implemented without the input and participation of minority communities and organizations. While our report here focuses on the promise of data, we need to remain aware of the potential to weaponize data against vulnerable and already disenfranchised communities. In addition, (hidden) biases in data collected and used in AI algorithms, as well as in a host of other areas across the data life cycle, will only exacerbate racial inequalities if not addressed….(More)”

ALSO: The piece is supplemented by a crowdsourced listing of Data-Driven Efforts to Address Racial Inequality.

Fear of a Black and Brown Internet: Policing Online Activism


Paper by Sahar F. Aziz and Khaled A. Beydoun: “Virtual surveillance is the modern extension of established policing models that tie dissident Muslim advocacy to terror suspicion and Black activism to political subversion. Countering Violent Extremism (“CVE”) and Black Identity Extremism (“BIE”) programs that specifically target Muslim and Black populations are shifting from on the ground to online.

Law enforcement exploits social media platforms — where activism and advocacy is robust — to monitor and crack down on activists. In short, the new policing is the old policing, but it is stealthily morphing and moving onto virtual platforms where activism is fluidly unfolding in real time. This Article examines how the law’s failure to keep up with technological advancements in social media poses serious risks to the ability of minority communities to mobilize against racial and religious injustice….(More)”.

Using Algorithms to Address Trade-Offs Inherent in Predicting Recidivism


Paper by Jennifer L. Skeem and Christopher Lowenkamp: “Although risk assessment has increasingly been used as a tool to help reform the criminal justice system, some stakeholders are adamantly opposed to using algorithms. The principal concern is that any benefits achieved by safely reducing rates of incarceration will be offset by costs to racial justice claimed to be inherent in the algorithms themselves. But fairness tradeoffs are inherent to the task of predicting recidivism, whether the prediction is made by an algorithm or human.

Based on a matched sample of 67,784 Black and White federal supervisees assessed with the Post Conviction Risk Assessment (PCRA), we compare how three alternative strategies for “debiasing” algorithms affect these tradeoffs, using arrest for a violent crime as the criterion. These candidate algorithms all strongly predict violent re-offending (AUCs=.71-72), but vary in their association with race (r= .00-.21) and shift tradeoffs between balance in positive predictive value and false positive rates. Providing algorithms with access to race (rather than omitting race or ‘blinding’ its effects) can maximize calibration and minimize imbalanced error rates. Implications for policymakers with value preferences for efficiency vs. equity are discussed…(More)”.

Race After Technology: Abolitionist Tools for the New Jim Code


Book by Ruha Benjamin: “From everyday apps to complex algorithms, Ruha Benjamin cuts through tech-industry hype to understand how emerging technologies can reinforce White supremacy and deepen social inequity.

Benjamin argues that automation, far from being a sinister story of racist programmers scheming on the dark web, has the potential to hide, speed up, and deepen discrimination while appearing neutral and even benevolent when compared to the racism of a previous era. Presenting the concept of the “New Jim Code,” she shows how a range of discriminatory designs encode inequity by explicitly amplifying racial hierarchies; by ignoring but thereby replicating social divisions; or by aiming to fix racial bias but ultimately doing quite the opposite. Moreover, she makes a compelling case for race itself as a kind of technology, designed to stratify and sanctify social injustice in the architecture of everyday life.

This illuminating guide provides conceptual tools for decoding tech promises with sociologically informed skepticism. In doing so, it challenges us to question not only the technologies we are sold but also the ones we ourselves manufacture….(More)”.

Measuring the predictability of life outcomes with a scientific mass collaboration


Paper by Matthew J. Salganik et al: “Hundreds of researchers attempted to predict six life outcomes, such as a child’s grade point average and whether a family would be evicted from their home. These researchers used machine-learning methods optimized for prediction, and they drew on a vast dataset that was painstakingly collected by social scientists over 15 y. However, no one made very accurate predictions. For policymakers considering using predictive models in settings such as criminal justice and child-protective services, these results raise a number of concerns. Additionally, researchers must reconcile the idea that they understand life trajectories with the fact that none of the predictions were very accurate….(More)”.

Scraping the Web for Public Health Gains: Ethical Considerations from a ‘Big Data’ Research Project on HIV and Incarceration


Stuart Rennie, Mara Buchbinder, Eric Juengst, Lauren Brinkley-Rubinstein, and David L Rosen at Public Health Ethics: “Web scraping involves using computer programs for automated extraction and organization of data from the Web for the purpose of further data analysis and use. It is frequently used by commercial companies, but also has become a valuable tool in epidemiological research and public health planning. In this paper, we explore ethical issues in a project that “scrapes” public websites of U.S. county jails as part of an effort to develop a comprehensive database (including individual-level jail incarcerations, court records and confidential HIV records) to enhance HIV surveillance and improve continuity of care for incarcerated populations. We argue that the well-known framework of Emanuel et al. (2000) provides only partial ethical guidance for the activities we describe, which lie at a complex intersection of public health research and public health practice. We suggest some ethical considerations from the ethics of public health practice to help fill gaps in this relatively unexplored area….(More)”.

Self-interest and data protection drive the adoption and moral acceptability of big data technologies: A conjoint analysis approach


Paper by Rabia I.Kodapanakka, lMark J.Brandt, Christoph Kogler, and Iljavan Beest: “Big data technologies have both benefits and costs which can influence their adoption and moral acceptability. Prior studies look at people’s evaluations in isolation without pitting costs and benefits against each other. We address this limitation with a conjoint experiment (N = 979), using six domains (criminal investigations, crime prevention, citizen scores, healthcare, banking, and employment), where we simultaneously test the relative influence of four factors: the status quo, outcome favorability, data sharing, and data protection on decisions to adopt and perceptions of moral acceptability of the technologies.

We present two key findings. (1) People adopt technologies more often when data is protected and when outcomes are favorable. They place equal or more importance on data protection in all domains except healthcare where outcome favorability has the strongest influence. (2) Data protection is the strongest driver of moral acceptability in all domains except healthcare, where the strongest driver is outcome favorability. Additionally, sharing data lowers preference for all technologies, but has a relatively smaller influence. People do not show a status quo bias in the adoption of technologies. When evaluating moral acceptability, people show a status quo bias but this is driven by the citizen scores domain. Differences across domains arise from differences in magnitude of the effects but the effects are in the same direction. Taken together, these results highlight that people are not always primarily driven by self-interest and do place importance on potential privacy violations. They also challenge the assumption that people generally prefer the status quo….(More)”.

Smarter government or data-driven disaster: the algorithms helping control local communities


Release by MuckRock: “What is the chance you, or your neighbor, will commit a crime? Should the government change a child’s bus route? Add more police to a neighborhood or take some away?

Every day government decisions from bus routes to policing used to be based on limited information and human judgment. Governments now use the ability to collect and analyze hundreds of data points everyday to automate many of their decisions.

Does handing government decisions over to algorithms save time and money? Can algorithms be fairer or less biased than human decision making? Do they make us safer? Automation and artificial intelligence could improve the notorious inefficiencies of government, and it could exacerbate existing errors in the data being used to power it.

MuckRock and the Rutgers Institute for Information Policy & Law (RIIPL) have compiled a collection of algorithms used in communities across the country to automate government decision-making.

Go right to the database.

We have also compiled policies and other guiding documents local governments use to make room for the future use of algorithms. You can find those as a project on DocumentCloud.

View policies on smart cities and technologies

These collections are a living resource and attempt to communally collect records and known instances of automated decision making in government….(More)”.

Predictive Policing Theory


Paper by Andrew Guthrie Ferguson: “Predictive policing is changing law enforcement. New place-based predictive analytic technologies allow police to predict where and when a crime might occur. Data-driven insights have been operationalized into concrete decisions about police priorities and resource allocation. In the last few years, place-based predictive policing has spread quickly across the nation, offering police administrators the ability to identify higher crime locations, to restructure patrol routes, and to develop crime suppression strategies based on the new data.

This chapter suggests that the debate about technology is better thought about as a choice of policing theory. In other words, when purchasing a particular predictive technology, police should be doing more than simply choosing the most sophisticated predictive model; instead they must first make a decision about the type of policing response that makes sense in their community. Foundational questions about whether we want police officers to be agents of social control, civic problem-solvers, or community partners lie at the heart of any choice of which predictive technology might work best for any given jurisdiction.

This chapter then examines predictive policing technology as a choice about policing theory and how the purchase of a particular predictive tool becomes – intentionally or unintentionally – a statement about police role. Interestingly, these strategic choices map on to existing policing theories. Three of the traditional policing philosophies – hot spot policing , problem-oriented policing, and community-based policing have loose parallels with new place-based predictive policing technologies like PredPol, Risk Terrain Modeling (RTM), and HunchLab. This chapter discusses these leading predictive policing technologies as illustrative examples of how police can choose between prioritizing additional police presence, targeting environmental vulnerabilities, and/or establishing a community problem-solving approach as a different means of achieving crime reduction….(More)”.

Machine Learning Technologies and Their Inherent Human Rights Issues in Criminal Justice Contexts


Essay by Jamie Grace: “This essay is an introductory exploration of machine learning technologies and their inherent human rights issues in criminal justice contexts. These inherent human rights issues include privacy concerns, the chilling of freedom of expression, problems around potential for racial discrimination, and the rights of victims of crime to be treated with dignity.

This essay is built around three case studies – with the first on the digital ‘mining’ of rape complainants’ mobile phones for evidence for disclosure to defence counsel. This first case study seeks to show how AI or machine learning tech might hypothetically either ease or inflame some of the tensions involved for human rights in this context. The second case study is concerned with the human rights challenges of facial recognition of suspects by police forces, using automated algorithms (live facial recognition) in public places. The third case study is concerned with the development of useful self-regulation in algorithmic governance practices in UK policing. This essay concludes with an emphasis on the need for the ‘politics of information’ (Lyon, 2007) to catch up with the ‘politics of public protection’ (Nash, 2010)….(More)”.