Urban Analytics (Updated and Expanded)


As part of an ongoing effort to build a knowledge base for the field of opening governance by organizing and disseminating its learnings, the GovLab Selected Readings series provides an annotated and curated collection of recommended works on key opening governance topics. In this edition, we explore the literature on Urban Analytics. To suggest additional readings on this or any other topic, please email [email protected].

Data and its uses for Governance

Urban Analytics places better information in the hands of citizens as well as government officials to empower people to make more informed choices. Today, we are able to gather real-time information about traffic, pollution, noise, and environmental and safety conditions by culling data from a range of tools: from the low-cost sensors in mobile phones to more robust monitoring tools installed in our environment. With data collected and combined from the built, natural and human environments, we can develop more robust predictive models and use those models to make policy smarter.

With the computing power to transmit and store the data from these sensors, and the tools to translate raw data into meaningful visualizations, we can identify problems as they happen, design new strategies for city management, and target the application of scarce resources where they are most needed.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)
Amini, L., E. Bouillet, F. Calabrese, L. Gasparini, and O. Verscheure. “Challenges and Results in City-scale Sensing.” In IEEE Sensors, 59–61, 2011. http://bit.ly/1doodZm.

  • This paper examines “how city requirements map to research challenges in machine learning, optimization, control, visualization, and semantic analysis.”
  • The authors raises several research challenges including how to extract accurate information when the data is noisy and sparse; how to represent findings from digital pervasive technologies; and how people interact with one another and their environment.

Batty, M., K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. Wachowicz, G. Ouzounis, and Y. Portugali. “Smart Cities of the Future.The European Physical Journal Special Topics 214, no. 1 (November 1, 2012): 481–518. http://bit.ly/HefbjZ.

  • This paper explores the goals and research challenges involved in the development of smart cities that merge ICT with traditional infrastructures through digital technologies.
  • The authors put forth several research objectives, including: 1) to explore the notion of the city as a laboratory for innovation; 2) to develop technologies that ensure equity, fairness and realize a better quality of city life; and 3) to develop technologies that ensure informed participation and create shared knowledge for democratic city governance.
  • The paper also examines several contemporary smart city initiatives, expected paradigm shifts in the field, benefits, risks and impacts.

Budde, Paul. “Smart Cities of Tomorrow.” In Cities for Smart Environmental and Energy Futures, edited by Stamatina Th Rassia and Panos M. Pardalos, 9–20. Energy Systems. Springer Berlin Heidelberg, 2014. http://bit.ly/17MqPZW.

  • This paper examines the components and strategies involved in the creation of smart cities featuring “cohesive and open telecommunication and software architecture.”
  • In their study of smart cities, the authors examine smart and renewable energy; next-generation networks; smart buildings; smart transport; and smart government.
  • They conclude that for the development of smart cities, information and communication technology (ICT) is needed to build more horizontal collaborative structures, useful data must be analyzed in real time and people and/or machines must be able to make instant decisions related to social and urban life.

Cardone, G., L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Talasila, and R. Curtmola. “Fostering Participaction in Smart Cities: a Geo-social Crowdsensing Platform.” IEEE Communications
Magazine 51, no. 6 (2013): 112–119. http://bit.ly/17iJ0vZ.

  • This article examines “how and to what extent the power of collective although imprecise intelligence can be employed in smart cities.”
  • To tackle problems of managing the crowdsensing process, this article proposes a “crowdsensing platform with three main original technical aspects: an innovative geo-social model to profile users along different variables, such as time, location, social interaction, service usage, and human activities; a matching algorithm to autonomously choose people to involve in participActions and to quantify the performance of their sensing; and a new Android-based platform to collect sensing data from smart phones, automatically or with user help, and to deliver sensing/actuation tasks to users.”

Chen, Chien-Chu. “The Trend towards ‘Smart Cities.’” International Journal of Automation and Smart Technology. June 1, 2014. http://bit.ly/1jOOaAg.

  • In this study, Chen explores the ambitions, prevalence and outcomes of a variety of smart cities, organized into five categories:
    • Transportation-focused smart cities
    • Energy-focused smart cities
    • Building-focused smart cities
    • Water-resources-focused smart cities
    • Governance-focused smart cities
  • The study finds that the “Asia Pacific region accounts for the largest share of all smart city development plans worldwide, with 51% of the global total. Smart city development plans in the Asia Pacific region tend to be energy-focused smart city initiatives, aimed at easing the pressure on energy resources that will be caused by continuing rapid urbanization in the future.”
  • North America, on the other hand is generally more geared toward energy-focused smart city development plans. “In North America, there has been a major drive to introduce smart meters and smart electric power grids, integrating the electric power sector with information and communications technology (ICT) and replacing obsolete electric power infrastructure, so as to make cities’ electric power systems more reliable (which in turn can help to boost private-sector investment, stimulate the growth of the ‘green energy’ industry, and create more job opportunities).”
  • Looking to Taiwan as an example, Chen argues that, “Cities in different parts of the world face different problems and challenges when it comes to urban development, making it necessary to utilize technology applications from different fields to solve the unique problems that each individual city has to overcome; the emphasis here is on the development of customized solutions for smart city development.”

Domingo, A., B. Bellalta, M. Palacin, M. Oliver and E. Almirall. “Public Open Sensor Data: Revolutionizing Smart Cities.” Technology and Society Magazine, IEEE 32, No. 4. Winter 2013. http://bit.ly/1iH6ekU.

  • In this article, the authors explore the “enormous amount of information collected by sensor devices” that allows for “the automation of several real-time services to improve city management by using intelligent traffic-light patterns during rush hour, reducing water consumption in parks, or efficiently routing garbage collection trucks throughout the city.”
  • They argue that, “To achieve the goal of sharing and open data to the public, some technical expertise on the part of citizens will be required. A real environment – or platform – will be needed to achieve this goal.” They go on to introduce a variety of “technical challenges and considerations involved in building an Open Sensor Data platform,” including:
    • Scalability
    • Reliability
    • Low latency
    • Standardized formats
    • Standardized connectivity
  • The authors conclude that, despite incredible advancements in urban analytics and open sensing in recent years, “Today, we can only imagine the revolution in Open Data as an introduction to a real-time world mashup with temperature, humidity, CO2 emission, transport, tourism attractions, events, water and gas consumption, politics decisions, emergencies, etc., and all of this interacting with us to help improve the future decisions we make in our public and private lives.”

Harrison, C., B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak, and P. Williams. “Foundations for Smarter Cities.” IBM Journal of Research and Development 54, no. 4 (2010): 1–16. http://bit.ly/1iha6CR.

  • This paper describes the information technology (IT) foundation and principles for Smarter Cities.
  • The authors introduce three foundational concepts of smarter cities: instrumented, interconnected and intelligent.
  • They also describe some of the major needs of contemporary cities, and concludes that Creating the Smarter City implies capturing and accelerating flows of information both vertically and horizontally.

Hernández-Muñoz, José M., Jesús Bernat Vercher, Luis Muñoz, José A. Galache, Mirko Presser, Luis A. Hernández Gómez, and Jan Pettersson. “Smart Cities at the Forefront of the Future Internet.” In The Future Internet, edited by John Domingue, Alex Galis, Anastasius Gavras, Theodore Zahariadis, Dave Lambert, Frances Cleary, Petros Daras, et al., 447–462. Lecture Notes in Computer Science 6656. Springer Berlin Heidelberg, 2011. http://bit.ly/HhNbMX.

  • This paper explores how the “Internet of Things (IoT) and Internet of Services (IoS), can become building blocks to progress towards a unified urban-scale ICT platform transforming a Smart City into an open innovation platform.”
  • The authors examine the SmartSantander project to argue that, “the different stakeholders involved in the smart city business is so big that many non-technical constraints must be considered (users, public administrations, vendors, etc.).”
  • The authors also discuss the need for infrastructures at the, for instance, European level for realistic large-scale experimentally-driven research.

Hoon-Lee, Jung, Marguerite Gong Hancock, Mei-Chih Hu. “Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco.” Technological Forecasting and Social Change. Ocotober 3, 2013. http://bit.ly/1rzID5v.

  • In this study, the authors aim to “shed light on the process of building an effective smart city by integrating various practical perspectives with a consideration of smart city characteristics taken from the literature.”
  • They propose a conceptual framework based on case studies from Seoul and San Francisco built around the following dimensions:
    • Urban openness
    • Service innovation
    • Partnerships formation
    • Urban proactiveness
    • Smart city infrastructure integration
    • Smart city governance
  • The authors conclude with a summary of research findings featuring “8 stylized facts”:
    • Movement towards more interactive services engaging citizens;
    • Open data movement facilitates open innovation;
    • Diversifying service development: exploit or explore?
    • How to accelerate adoption: top-down public driven vs. bottom-up market driven partnerships;
    • Advanced intelligent technology supports new value-added smart city services;
    • Smart city services combined with robust incentive systems empower engagement;
    • Multiple device & network accessibility can create network effects for smart city services;
    • Centralized leadership implementing a comprehensive strategy boosts smart initiatives.

Kamel Boulos, Maged N. and Najeeb M. Al-Shorbaji. “On the Internet of Things, smart cities and the WHO Healthy Cities.” International Journal of Health Geographics 13, No. 10. 2014. http://bit.ly/Tkt9GA.

  • In this article, the authors give a “brief overview of the Internet of Things (IoT) for cities, offering examples of IoT-powered 21st century smart cities, including the experience of the Spanish city of Barcelona in implementing its own IoT-driven services to improve the quality of life of its people through measures that promote an eco-friendly, sustainable environment.”
  • The authors argue that one of the central needs for harnessing the power of the IoT and urban analytics is for cities to “involve and engage its stakeholders from a very early stage (city officials at all levels, as well as citizens), and to secure their support by raising awareness and educating them about smart city technologies, the associated benefits, and the likely challenges that will need to be overcome (such as privacy issues).”
  • They conclude that, “The Internet of Things is rapidly gaining a central place as key enabler of the smarter cities of today and the future. Such cities also stand better chances of becoming healthier cities.”

Keller, Sallie Ann, Steven E. Koonin, and Stephanie Shipp. “Big Data and City Living – What Can It Do for Us?Significance 9, no. 4 (2012): 4–7. http://bit.ly/166W3NP.

  • This article provides a short introduction to Big Data, its importance, and the ways in which it is transforming cities. After an overview of the social benefits of big data in an urban context, the article examines its challenges, such as privacy concerns and institutional barriers.
  • The authors recommend that new approaches to making data available for research are needed that do not violate the privacy of entities included in the datasets. They believe that balancing privacy and accessibility issues will require new government regulations and incentives.

Kitchin, Rob. “The Real-Time City? Big Data and Smart Urbanism.” SSRN Scholarly Paper. Rochester, NY: Social Science Research Network, July 3, 2013. http://bit.ly/1aamZj2.

  • This paper focuses on “how cities are being instrumented with digital devices and infrastructure that produce ‘big data’ which enable real-time analysis of city life, new modes of technocratic urban governance, and a re-imagining of cities.”
  • The authors provide “a number of projects that seek to produce a real-time analysis of the city and provides a critical reflection on the implications of big data and smart urbanism.”

Mostashari, A., F. Arnold, M. Maurer, and J. Wade. “Citizens as Sensors: The Cognitive City Paradigm.” In 2011 8th International Conference Expo on Emerging Technologies for a Smarter World (CEWIT), 1–5, 2011. http://bit.ly/1fYe9an.

  • This paper argues that. “implementing sensor networks are a necessary but not sufficient approach to improving urban living.”
  • The authors introduce the concept of the “Cognitive City” – a city that can not only operate more efficiently due to networked architecture, but can also learn to improve its service conditions, by planning, deciding and acting on perceived conditions.
  • Based on this conceptualization of a smart city as a cognitive city, the authors propose “an architectural process approach that allows city decision-makers and service providers to integrate cognition into urban processes.”

Oliver, M., M. Palacin, A. Domingo, and V. Valls. “Sensor Information Fueling Open Data.” In Computer Software and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th Annual, 116–121, 2012. http://bit.ly/HjV4jS.

  • This paper introduces the concept of sensor networks as a key component in the smart cities framework, and shows how real-time data provided by different city network sensors enrich Open Data portals and require a new architecture to deal with massive amounts of continuously flowing information.
  • The authors’ main conclusion is that by providing a framework to build new applications and services using public static and dynamic data that promote innovation, a real-time open sensor network data platform can have several positive effects for citizens.

Perera, Charith, Arkady Zaslavsky, Peter Christen and Dimitrios Georgakopoulos. “Sensing as a service model for smart cities supported by Internet of Things.” Transactions on Emerging Telecommunications Technologies 25, Issue 1. January 2014. http://bit.ly/1qJLDP9.

  • This paper looks into the “enormous pressure towards efficient city management” that has “triggered various Smart City initiatives by both government and private sector businesses to invest in information and communication technologies to find sustainable solutions to the growing issues.”
  • The authors explore the parallel advancement of the Internet of Things (IoT), which “envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities.”
  • The paper proposes the sensing as a service model “as a solution based on IoT infrastructure.” The sensing as a service model consists of four conceptual layers: “(i) sensors and sensor owners; (ii) sensor publishers (SPs); (iii) extended service providers (ESPs); and (iv) sensor data consumers. They go on to describe how this model would work in the areas of waste management, smart agriculture and environmental management.

Privacy, Big Data, and the Public Good: Frameworks for Engagement. Edited by Julia Lane, Victoria Stodden, Stefan Bender, and Helen Nissenbaum; Cambridge University Press, 2014. http://bit.ly/UoGRca.

  • This book focuses on the legal, practical, and statistical approaches for maximizing the use of massive datasets while minimizing information risk.
  • “Big data” is more than a straightforward change in technology.  It poses deep challenges to our traditions of notice and consent as tools for managing privacy.  Because our new tools of data science can make it all but impossible to guarantee anonymity in the future, the authors question whether it possible to truly give informed consent, when we cannot, by definition, know what the risks are from revealing personal data either for individuals or for society as a whole.
  • Based on their experience building large data collections, authors discuss some of the best practical ways to provide access while protecting confidentiality.  What have we learned about effective engineered controls?  About effective access policies?  About designing data systems that reinforce – rather than counter – access policies?  They also explore the business, legal, and technical standards necessary for a new deal on data.
  • Since the data generating process or the data collection process is not necessarily well understood for big data streams, authors discuss what statistics can tell us about how to make greatest scientific use of this data. They also explore the shortcomings of current disclosure limitation approaches and whether we can quantify the extent of privacy loss.

Schaffers, Hans, Nicos Komninos, Marc Pallot, Brigitte Trousse, Michael Nilsson, and Alvaro Oliveira. “Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation.” In The Future Internet, edited by John Domingue, Alex Galis, Anastasius Gavras, Theodore Zahariadis, Dave Lambert, Frances Cleary, Petros Daras, et al., 431–446. Lecture Notes in Computer Science 6656. Springer Berlin Heidelberg, 2011. http://bit.ly/16ytKoT.

  • This paper “explores ‘smart cities’ as environments of open and user-driven innovation for experimenting and validating Future Internet-enabled services.”
  • The authors examine several smart city projects to illustrate the central role of users in defining smart services and the importance of participation. They argue that, “Two different layers of collaboration can be distinguished. The first layer is collaboration within the innovation process. The second layer concerns collaboration at the territorial level, driven by urban and regional development policies aiming at strengthening the urban innovation systems through creating effective conditions for sustainable innovation.”

Suciu, G., A. Vulpe, S. Halunga, O. Fratu, G. Todoran, and V. Suciu. “Smart Cities Built on Resilient Cloud Computing and Secure Internet of Things.” In 2013 19th International Conference on Control Systems and Computer Science (CSCS), 513–518, 2013. http://bit.ly/16wfNgv.

  • This paper proposes “a new platform for using cloud computing capacities for provision and support of ubiquitous connectivity and real-time applications and services for smart cities’ needs.”
  • The authors present a “framework for data procured from highly distributed, heterogeneous, decentralized, real and virtual devices (sensors, actuators, smart devices) that can be automatically managed, analyzed and controlled by distributed cloud-based services.”

Townsend, Anthony. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia. W. W. Norton & Company, 2013.

  • In this book, Townsend illustrates how “cities worldwide are deploying technology to address both the timeless challenges of government and the mounting problems posed by human settlements of previously unimaginable size and complexity.”
  • He also considers “the motivations, aspirations, and shortcomings” of the many stakeholders involved in the development of smart cities, and poses a new civics to guide these efforts.
  • He argues that smart cities are not made smart by various, soon-to-be-obsolete technologies built into its infrastructure, but how citizens use these ever-changing technologies to be “human-centered, inclusive and resilient.”

To stay current on recent writings and developments on Urban Analytics, please subscribe to the GovLab Digest.
Did we miss anything? Please submit reading recommendations to [email protected] or in the comments below.

Predicting crime, LAPD-style


The Guardian: “The Los Angeles Police Department, like many urban police forces today, is both heavily armed and thoroughly computerised. The Real-Time Analysis and Critical Response Division in downtown LA is its central processor. Rows of crime analysts and technologists sit before a wall covered in video screens stretching more than 10 metres wide. Multiple news broadcasts are playing simultaneously, and a real-time earthquake map is tracking the region’s seismic activity. Half-a-dozen security cameras are focused on the Hollywood sign, the city’s icon. In the centre of this video menagerie is an oversized satellite map showing some of the most recent arrests made across the city – a couple of burglaries, a few assaults, a shooting.

Advertisement

On a slightly smaller screen the division’s top official, Captain John Romero, mans the keyboard and zooms in on a comparably micro-scale section of LA. It represents just 500 feet by 500 feet. Over the past six months, this sub-block section of the city has seen three vehicle burglaries and two property burglaries – an atypical concentration. And, according to a new algorithm crunching crime numbers in LA and dozens of other cities worldwide, it’s a sign that yet more crime is likely to occur right here in this tiny pocket of the city.
The algorithm at play is performing what’s commonly referred to as predictive policing. Using years – and sometimes decades – worth of crime reports, the algorithm analyses the data to identify areas with high probabilities for certain types of crime, placing little red boxes on maps of the city that are streamed into patrol cars. “Burglars tend to be territorial, so once they find a neighbourhood where they get good stuff, they come back again and again,” Romero says. “And that assists the algorithm in placing the boxes.”
Romero likens the process to an amateur fisherman using a fish finder device to help identify where fish are in a lake. An experienced fisherman would probably know where to look simply by the fish species, time of day, and so on. “Similarly, a really good officer would be able to go out and find these boxes. This kind of makes the average guys’ ability to find the crime a little bit better.”
Predictive policing is just one tool in this new, tech-enhanced and data-fortified era of fighting and preventing crime. As the ability to collect, store and analyse data becomes cheaper and easier, law enforcement agencies all over the world are adopting techniques that harness the potential of technology to provide more and better information. But while these new tools have been welcomed by law enforcement agencies, they’re raising concerns about privacy, surveillance and how much power should be given over to computer algorithms.
P Jeffrey Brantingham is a professor of anthropology at UCLA who helped develop the predictive policing system that is now licensed to dozens of police departments under the brand name PredPol. “This is not Minority Report,” he’s quick to say, referring to the science-fiction story often associated with PredPol’s technique and proprietary algorithm. “Minority Report is about predicting who will commit a crime before they commit it. This is about predicting where and when crime is most likely to occur, not who will commit it.”…”

Towards a comparative science of cities: using mobile traffic records in New York, London and Hong Kong


Book chapter by S. Grauwin, S. Sobolevsky, S. Moritz, I. Gódor, C. Ratti, to be published in “Computational Approaches for Urban Environments” (Springer Ed.), October 2014: “This chapter examines the possibility to analyze and compare human activities in an urban environment based on the detection of mobile phone usage patterns. Thanks to an unprecedented collection of counter data recording the number of calls, SMS, and data transfers resolved both in time and space, we confirm the connection between temporal activity profile and land usage in three global cities: New York, London and Hong Kong. By comparing whole cities typical patterns, we provide insights on how cultural, technological and economical factors shape human dynamics. At a more local scale, we use clustering analysis to identify locations with similar patterns within a city. Our research reveals a universal structure of cities, with core financial centers all sharing similar activity patterns and commercial or residential areas with more city-specific patterns. These findings hint that as the economy becomes more global, common patterns emerge in business areas of different cities across the globe, while the impact of local conditions still remains recognizable on the level of routine people activity.”

The Emerging Power of Big Data


New America Foundation Report on the Chicago experience of using big data: “Big data is transforming the commercial marketplace but it also has the potential to reshape government affairs and urban development.  In a new report from the Emerging Leaders Program at the Chicago Council of Global Affairs, Lincoln S. Ellis, a founding member of the World Economic Roundtable, and other authors from the Emerging Leaders Program, explore how big data can be used by mega-cities to meet the challenges they face in an age of resource constraints to improve the lives of their residents.
Using Chicago as a case study, the report examines how the explosion of data availability enables cities to do more with less—to improve government services, fund much needed transportation, provide better education, and guarantee public safety.  And do more with less is what many cities have had to do over the past five years because many cities have had to cut their budgets and reduce the number of public employees in the post-financial crisis economy.  It is also what they will need to continue to do in the future.
“Unfortunately, resource constraints are a consistent feature of the post-crisis global landscape,” argues Ellis.  “Happily, so too is the renaissance in productivity gains garnered by our ability to leverage technology and information to achieve our most important public purposes in a smarter and more efficient way.”
Click here to view the report as a PDF.”

App pays commuters to take routes that ease congestion


Springwise: “Congestion at peak hours is a major problem in the world’s busiest city centres. We’ve recently seen Gothenburg in Sweden offering free bicycles to ease the burden on public transport services, but now a new app is looking to take a different approach to the same problem. Urban Engines uses algorithms to help cities determine key congestion choke points and times, and can then reward commuters for avoiding them.
The Urban Engines system is based on commuters using the smart commuter cards already found in many major cities. The company tracks journeys made with those commuter cards, and uses that data to identify main areas of congestion, and at what times the congestion occurs. The system has already been employed in Washington, D.C, and Sao Paulo, Brazil, helping provide valuable data for work with city planners.
It’s in Singapore, however, where the most interesting work has been achieved so far. There, commuters who have signed up and registered their commuter cards can earn rewards when they travel. They will earn one point for every kilometre travelled during peak hours, or triple that when travelling off-peak. The points earned can then be converted into discounts on future journeys, or put towards an in-app raffle game, where they have the opportunity to win sums of money. Urban Engines claim there’s been a 7 to 13 percent reduction in journeys made during peak hours, with 200,000 commuters taking part.
The company is based on an original experiment carried out in Bangalore. The rewards program there, carried out among 20,000 employees of the Indian company Infosys, lead to 17 percent of traffic shifting to off-peak travel times in six months. A similarly successful experiment has also been carried out on the Stanford University campus, and the plan is to now expand to other major cities…”

Lawsuit Would Force IRS to Release Nonprofit Tax Forms Digitally


Suzanne Perry at the Chronicle of Philanthropy on how “Open Data Could Shine a Light on Pay and Lobbying”: “Nonprofits that want to find out what their peers are doing can find a wealth of information in the forms the groups must file each year with the Internal Revenue Service—how much they pay their chief executives, how much they spend on fundraising, who is on their boards, where they offer services.
But the way the IRS makes those data available harkens to the digital dark ages, and critics who want to overhaul the system have been shaking up the generally polite nonprofit world with legal challenges, charges of monopoly, and talk of “disrupting” the status quo.
The issue will take center stage in a courtroom this week when a federal district judge in San Francisco is scheduled to consider arguments about whether to approve the IRS’s move to dismiss a lawsuit filed by an open-records group.
The group wants to obtain some specific Forms 990s, the informational tax documents filed by nonprofits, in a format that can be read by computers.
In theory, that shouldn’t be difficult since the nine nonprofits involved— including the American National Standards Institute, the New Horizons Foundation, and the International Code Council—submitted the forms electronically. But the IRS converts all 990s, no matter how they were filed, into images, rendering them useless for digital operations like searching multiple forms for information­.
That means watchdog groups and those that provide information on charities, like Charity Navigator, GuideStar, and the Urban Institute, have to spend money to manually enter the data they get from the IRS before making it available to the public, even if it has previously been digitized.
The lawsuit against the IRS, filed by Public.Resource.Org, aims to end that practice.
Carl Malamud, who heads the group, is a longtime activist who successfully pushed the Securities and Exchange Commission to post corporate filings free online in the 1990s, among other projects.
He wants to do the same with the IRS, arguing that data should be readily available at no cost about a sector that represents more than 1.5 million tax-exempt organizations and more than $1.5-trillion in revenue.

Putting Open Data to Work for Communities


Report by  Kathryn L.S. PettitLeah HendeyBrianna LosoyaG. Thomas Kingsley  at the Urban Institute: “The National Neighborhood Indicators Partnership (NNIP) is a network of local organizations that collect, organize, and use neighborhood data to tackle issues in their communities. As the movement for government transparency has spread at the local level, more NNIP partners are participating in the call for governments to release data and are using open data to provide information for decisionmaking and community engagement. Local NNIP partners and open data advocates have complementary strengths and should work together to more effectively advance open government data that benefits all residents.”

In Defense of Transit Apps


Mark Headd at Civic Innovations: “The civic technology community has a love-hate relationship with transit apps.
We love to, and often do, use the example of open transit data and the cottage industry of civic app development it has helped spawn as justification for governments releasing open data. Some of the earliest, most enduring and most successful civic applications have been built on transit data and there literally hundreds of different apps available.
The General Transit Feed Specification (GTFS), which has helped to encourage the release of transit data from dozens and dozens of transportation authorities across the country, is used as the model for the development of other open data standards. I once described work being done to develop a data standard for locations dispensing vaccinations as “GTFS for flu shots.”
bracken-tweet
But some in the civic technology community chafe at the overuse of transit apps as the example cited for the release of open data and engagement with outside civic hackers. Surely there are other examples we can point to that get at deeper, more fundamental problems with civic engagement and the operation of government. Is the best articulation of the benefits of open data and civic hacking a simple bus stop application?
Last week at Transparency Camp in DC, during a session I ran on open data, I was asked what data governments should focus on releasing as open data. I stated my belief that – at a minimum – governments should concentrate on The 3 B’s: Buses (transit data), Bullets (crime data) and Bucks (budget & expenditure data).
To be clear – transit data and the apps it helps generate are critical to the open data and civic technology movements. I think it is vital to exploring the role that transit apps have played in the development of the civic technology ecosystem and their impact on open data.

Story telling with transit data

Transit data supports more than just “next bus” apps. In fact, characterizing all transit apps this way does a disservice to the talented and creative people working to build things with transit data. Transit data supports a wide range of different visualizations that can tell an intimate, granular story about how a transit system works and how it’s operation impacts a city.
One inspiring example of this kind of app was developed recently by Mike Barry and Brian Card, and looked at the operation of MBTA in Boston. Their motive was simple:

We attempt to present this information to help people in Boston better understand the trains, how people use the trains, and how the people and trains interact with each other.

We’re able to tell nuanced stories about transit systems because the quality of data being released continues to expand and improve in quality. This happens because developers building apps in cities across the country have provided feedback to transit officials on what they want to see and the quality of what is provided.
Developers building the powerful visualizations we see today are standing on the shoulders of the people that built the “next bus” apps a few years ago. Without these humble apps, we don’t get to tell these powerful stories today.

Holding government accountable

Transit apps are about more than just getting to the train on time.
Support for transit system operations can run into the billions of dollars and affect the lives of millions of people in an urban area. With this much investment, it’s important that transit riders and taxpayers are able to hold officials accountable for the efficient operation of transit systems. To help us do this, we now have a new generation of transit apps that can examine things like the scheduled arrival and departure times of trains with their actual arrival and departure time.
Not only does this give citizens transparency into how well their transit system is being run, it offers a pathway for engagement – by knowing which routes are not performing close to scheduled times, transit riders and others can offer suggestions for changes and improvements.

A gateway to more open data

One of the most important things that transit apps can do is provide a pathway for more open data.
In Philadelphia, the city’s formal open data policy and the creation of an open data portal all followed after the efforts of a small group of developers working to obtain transit schedule data from the Southeastern Pennsylvania Transportation Authority (SEPTA). This group eventually built the region’s first transit app.
This small group pushed SEPTA to make their data open, and the Authority eventually embraced open data. This, in turn, raised the profile of open data with other city leaders and directly contributed to the adoption of an open data policy by the City of Philadelphia several years later. Without this simple transit app and the push for more open transit data, I don’t think this would have happened. Certainly not as soon as it did.
And it isn’t just big cities like Philadelphia. In Syracuse, NY – a small city with no tradition of civic hacking and no formal open data program – a group at a local hackathon decided that they wanted to build a platform for government open data.
The first data source they selected to focus on? Transit data. The first app they built? A transit app…”

The Emerging Science of Computational Anthropology


Emerging Technology From the arXiv: The increasing availability of big data from mobile phones and location-based apps has triggered a revolution in the understanding of human mobility patterns. This data shows the ebb and flow of the daily commute in and out of cities, the pattern of travel around the world and even how disease can spread through cities via their transport systems.
So there is considerable interest in looking more closely at human mobility patterns to see just how well it can be predicted and how these predictions might be used in everything from disease control and city planning to traffic forecasting and location-based advertising.
Today we get an insight into the kind of detailed that is possible thanks to the work of Zimo Yang at Microsoft research in Beijing and a few pals. These guys start with the hypothesis that people who live in a city have a pattern of mobility that is significantly different from those who are merely visiting. By dividing travelers into locals and non-locals, their ability to predict where people are likely to visit dramatically improves.
Zimo and co begin with data from a Chinese location-based social network called Jiepang.com. This is similar to Foursquare in the US. It allows users to record the places they visit and to connect with friends at these locations and to find others with similar interests.
The data points are known as check-ins and the team downloaded more than 1.3 million of them from five big cities in China: Beijing, Shanghai, Nanjing, Chengdu and Hong Kong. They then used 90 per cent of the data to train their algorithms and the remaining 10 per cent to test it. The Jiapang data includes the users’ hometowns so it’s easy to see whether an individual is checking in in their own city or somewhere else.
The question that Zimo and co want to answer is the following: given a particular user and their current location, where are they most likely to visit in the near future? In practice, that means analysing the user’s data, such as their hometown and the locations recently visited, and coming up with a list of other locations that they are likely to visit based on the type of people who visited these locations in the past.
Zimo and co used their training dataset to learn the mobility pattern of locals and non-locals and the popularity of the locations they visited. The team then applied this to the test dataset to see whether their algorithm was able to predict where locals and non-locals were likely to visit.
They found that their best results came from analysing the pattern of behaviour of a particular individual and estimating the extent to which this person behaves like a local. That produced a weighting called the indigenization coefficient that the researchers could then use to determine the mobility patterns this person was likely to follow in future.
In fact, Zimo and co say they can spot non-locals in this way without even knowing their home location. “Because non-natives tend to visit popular locations, like the Imperial Palace in Beijing and the Bund in Shanghai, while natives usually check in around their homes and workplaces,” they add.
The team say this approach considerably outperforms the mixed algorithms that use only individual visiting history and location popularity. “To our surprise, a hybrid algorithm weighted by the indigenization coefficients outperforms the mixed algorithm accounting for additional demographical information.”
It’s easy to imagine how such an algorithm might be useful for businesses who want to target certain types of travelers or local people. But there is a more interesting application too.
Zimo and co say that it is possible to monitor the way an individual’s mobility patterns change over time. So if a person moves to a new city, it should be possible to see how long it takes them to settle in.
One way of measuring this is in their mobility patterns: whether they are more like those of a local or a non-local. “We may be able to estimate whether a non-native person will behave like a native person after a time period and if so, how long in average a person takes to become a native-like one,” say Zimo and co.
That could have a fascinating impact on the way anthropologists study migration and the way immigrants become part of a local community. This is computational anthropology a science that is clearly in its early stages but one that has huge potential for the future.”
Ref: arxiv.org/abs/1405.7769 : Indigenization of Urban Mobility

Making cities smarter through citizen engagement


Vaidehi Shah at Eco-Business: “Rapidly progressing information communications technology (ICT) is giving rise to an almost infinite range of innovations that can be implemented in cities to make them more efficient and better connected. However, in order for technology to yield sustainable solutions, planners must prioritise citizen engagement and strong leadership.
This was the consensus on Tuesday at the World Cities Summit 2014, where representatives from city and national governments, technology firms and private sector organisations gathered in Singapore to discuss strategies and challenges to achieving sustainable cities in the future.
Laura Ipsen, Microsoft corporate vice president for worldwide public sector, identified globalisation, social media, big data, and mobility as the four major technological trends prevailing in cities today, as she spoke at the plenary session with a theme on “The next urban decade: critical challenges and opportunities”.
Despite these increasing trends, she cautioned, “technology does not build infrastructure, but it does help better engage citizens and businesses through public-private partnerships”.
For example, “LoveCleanStreets”, an online tool developed by Microsoft and partners, enables London residents to report infrastructure problems such as damaged roads or signs, shared Ipsen.
“By engaging citizens through this application, cities can fix problems early, before they get worse,” she said.
In Singapore, the ‘MyWaters’ app of PUB, Singapore’s national water agency, is also a key tool for the government to keep citizens up-to-date of water quality and safety issues in the country, she added.
Even if governments did not actively develop solutions themselves, simply making the immense amounts of data collected by the city open to businesses and citizens could make a big difference to urban liveability, Mark Chandler, director of the San Francisco Mayor’s Office of International Trade and Commerce, pointed out.
Opening up all of the data collected by San Francisco, for instance, yielded 60 free mobile applications that allow residents to access urban solutions related to public transport, parking, and electricity, among others, he explained. This easy and convenient access to infrastructure and amenities, which are a daily necessity, is integral to “a quality of life that keeps the talented workforce in the city,” Chandler said….”