Book Review: 'The Rule of Nobody' by Philip K. Howard


Stuart Taylor Jr in the Wall Street Journal: “Amid the liberal-conservative ideological clash that paralyzes our government, it’s always refreshing to encounter the views of Philip K. Howard, whose ideology is common sense spiked with a sense of urgency. In “The Rule of Nobody,” Mr. Howard shows how federal, state and local laws and regulations have programmed officials of both parties to follow rules so detailed, rigid and, often, obsolete as to leave little room for human judgment. He argues passionately that we will never solve our social problems until we abandon what he calls a misguided legal philosophy of seeking to put government on regulatory autopilot. He also predicts that our legal-governmental structure is “headed toward a stall and then a frightening plummet toward insolvency and political chaos.”
Mr. Howard, a big-firm lawyer who heads the nonpartisan government-reform coalition Common Good, is no conventional deregulator. But he warns that the “cumulative complexity” of the dense rulebooks that prescribe “every nuance of how law is implemented” leaves good officials without the freedom to do what makes sense on the ground. Stripped of the authority that they should have, he adds, officials have little accountability for bad results. More broadly, he argues that the very structure of our democracy is so clogged by deep thickets of dysfunctional law that it will only get worse unless conservatives and liberals alike cast off their distrust of human discretion.
The rulebooks should be “radically simplified,” Mr. Howard says, on matters ranging from enforcing school discipline to protecting nursing-home residents, from operating safe soup kitchens to building the nation’s infrastructure: Projects now often require multi-year, 5,000-page environmental impact statements before anything can begin to be constructed. Unduly detailed rules should be replaced by general principles, he says, that take their meaning from society’s norms and values and embrace the need for official discretion and responsibility.
Mr. Howard serves up a rich menu of anecdotes, including both the small-scale activities of a neighborhood and the vast administrative structures that govern national life. After a tree fell into a stream and caused flooding during a winter storm, Franklin Township, N.J., was barred from pulling the tree out until it had spent 12 days and $12,000 for the permits and engineering work that a state environmental rule required for altering any natural condition in a “C-1 stream.” The “Volcker Rule,” designed to prevent banks from using federally insured deposits to speculate in securities, was shaped by five federal agencies and countless banking lobbyists into 963 “almost unintelligible” pages. In New York City, “disciplining a student potentially requires 66 separate steps, including several levels of potential appeals”; meanwhile, civil-service rules make it virtually impossible to terminate thousands of incompetent employees. Children’s lemonade stands in several states have been closed down for lack of a vendor’s license.

 

Conservatives as well as liberals like detailed rules—complete with tedious forms, endless studies and wasteful legal hearings—because they don’t trust each other with discretion. Corporations like them because they provide not only certainty but also “a barrier to entry for potential competitors,” by raising the cost of doing business to prohibitive levels for small businesses with fresh ideas and other new entrants to markets. Public employees like them because detailed rules “absolve them of responsibility.” And, adds Mr. Howard, “lawsuits [have] exploded in this rules-based regime,” shifting legal power to “self-interested plaintiffs’ lawyers,” who have learned that they “could sue for the moon and extract settlements even in cases (as with some asbestos claims) that were fraudulent.”
So habituated have we become to such stuff, Mr. Howard says, that government’s “self-inflicted ineptitude is accepted as a state of nature, as if spending an average of eight years on environmental reviews—which should be a national scandal—were an unavoidable mountain range.” Common-sensical laws would place outer boundaries on acceptable conduct based on reasonable norms that are “far better at preventing abuse of power than today’s regulatory minefield.”
“As Mr. Howard notes, his book is part of a centuries-old rules-versus-principles debate. The philosophers and writers whom he quotes approvingly include Aristotle, James Madison, Isaiah Berlin and Roscoe Pound, a prominent Harvard law professor and dean who condemned “mechanical jurisprudence” and championed broad official discretion. Berlin, for his part, warned against “monstrous bureaucratic machines, built in accordance with the rules that ignore the teeming variety of the living world, the untidy and asymmetrical inner lives of men, and crush them into conformity.” Mr. Howard juxtaposes today’s roughly 100 million words of federal law and regulations with Madison’s warning that laws should not be “so voluminous that they cannot be read, or so incoherent that they cannot be understood.”…

Let’s get geeks into government


Gillian Tett in the Financial Times: “Fifteen years ago, Brett Goldstein seemed to be just another tech entrepreneur. He was working as IT director of OpenTable, then a start-up website for restaurant bookings. The company was thriving – and subsequently did a very successful initial public offering. Life looked very sweet for Goldstein. But when the World Trade Center was attacked in 2001, Goldstein had a moment of epiphany. “I spent seven years working in a startup but, directly after 9/11, I knew I didn’t want my whole story to be about how I helped people make restaurant reservations. I wanted to work in public service, to give something back,” he recalls – not just by throwing cash into a charity tin, but by doing public service. So he swerved: in 2006, he attended the Chicago police academy and then worked for a year as a cop in one of the city’s toughest neighbourhoods. Later he pulled the disparate parts of his life together and used his number-crunching skills to build the first predictive data system for the Chicago police (and one of the first in any western police force), to indicate where crime was likely to break out.

This was such a success that Goldstein was asked by Rahm Emanuel, the city’s mayor, to create predictive data systems for the wider Chicago government. The fruits of this effort – which include a website known as “WindyGrid” – went live a couple of years ago, to considerable acclaim inside the techie scene.

This tale might seem unremarkable. We are all used to hearing politicians, business leaders and management consultants declare that the computing revolution is transforming our lives. And as my colleague Tim Harford pointed out in these pages last week, the idea of using big data is now wildly fashionable in the business and academic worlds….

In America when top bankers become rich, they often want to “give back” by having a second career in public service: just think of all those Wall Street financiers who have popped up at the US Treasury in recent years. But hoodie-wearing geeks do not usually do the same. Sure, there are some former techie business leaders who are indirectly helping government. Steve Case, a co-founder of AOL, has supported White House projects to boost entrepreneurship and combat joblessness. Tech entrepreneurs also make huge donations to philanthropy. Facebook’s Mark Zuckerberg, for example, has given funds to Newark education. And the whizz-kids have also occasionally been summoned by the White House in times of crisis. When there was a disastrous launch of the government’s healthcare website late last year, the Obama administration enlisted the help of some of the techies who had been involved with the president’s election campaign.

But what you do not see is many tech entrepreneurs doing what Goldstein did: deciding to spend a few years in public service, as a government employee. There aren’t many Zuckerberg types striding along the corridors of federal or local government.
. . .
It is not difficult to work out why. To most young entrepreneurs, the idea of working in a state bureaucracy sounds like utter hell. But if there was ever a time when it might make sense for more techies to give back by doing stints of public service, that moment is now. The civilian public sector badly needs savvier tech skills (just look at the disaster of that healthcare website for evidence of this). And as the sector’s founders become wealthier and more powerful, they need to show that they remain connected to society as a whole. It would be smart political sense.
So I applaud what Goldstein has done. I also welcome that he is now trying to persuade his peers to do the same, and that places such as the University of Chicago (where he teaches) and New York University are trying to get more young techies to think about working for government in between doing those dazzling IPOs. “It is important to see more tech entrepreneurs in public service. I am always encouraging people I know to do a ‘stint in government”. I tell them that giving back cannot just be about giving money; we need people from the tech world to actually work in government, “ Goldstein says.

But what is really needed is for more technology CEOs and leaders to get involved by actively talking about the value of public service – or even encouraging their employees to interrupt their private-sector careers with the occasional spell as a government employee (even if it is not in a sector quite as challenging as the police). Who knows? Maybe it could be Sheryl Sandberg’s next big campaigning mission. After all, if she does ever jump back to Washington, that could have a powerful demonstration effect for techie women and men. And shake DC a little too.”

Politics and the Internet


Edited book by William H. Dutton (Routledge – 2014 – 1,888 pages: “It is commonplace to observe that the Internet—and the dizzying technologies and applications which it continues to spawn—has revolutionized human communications. But, while the medium’s impact has apparently been immense, the nature of its political implications remains highly contested. To give but a few examples, the impact of networked individuals and institutions has prompted serious scholarly debates in political science and related disciplines on: the evolution of ‘e-government’ and ‘e-politics’ (especially after recent US presidential campaigns); electronic voting and other citizen participation; activism; privacy and surveillance; and the regulation and governance of cyberspace.
As research in and around politics and the Internet flourishes as never before, this new four-volume collection from Routledge’s acclaimed Critical Concepts in Political Science series meets the need for an authoritative reference work to make sense of a rapidly growing—and ever more complex—corpus of literature. Edited by William H. Dutton, Director of the Oxford Internet Institute (OII), the collection gathers foundational and canonical work, together with innovative and cutting-edge applications and interventions.
With a full index and comprehensive bibliographies, together with a new introduction by the editor, which places the collected material in its historical and intellectual context, Politics and the Internet is an essential work of reference. The collection will be particularly useful as a database allowing scattered and often fugitive material to be easily located. It will also be welcomed as a crucial tool permitting rapid access to less familiar—and sometimes overlooked—texts. For researchers, students, practitioners, and policy-makers, it is a vital one-stop research and pedagogic resource.”

Eight (No, Nine!) Problems With Big Data


Gary Marcus and Ernest Davis in the New York Times: “BIG data is suddenly everywhere. Everyone seems to be collecting it, analyzing it, making money from it and celebrating (or fearing) its powers. Whether we’re talking about analyzing zillions of Google search queries to predict flu outbreaks, or zillions of phone records to detect signs of terrorist activity, or zillions of airline stats to find the best time to buy plane tickets, big data is on the case. By combining the power of modern computing with the plentiful data of the digital era, it promises to solve virtually any problem — crime, public health, the evolution of grammar, the perils of dating — just by crunching the numbers.

Or so its champions allege. “In the next two decades,” the journalist Patrick Tucker writes in the latest big data manifesto, “The Naked Future,” “we will be able to predict huge areas of the future with far greater accuracy than ever before in human history, including events long thought to be beyond the realm of human inference.” Statistical correlations have never sounded so good.

Is big data really all it’s cracked up to be? There is no doubt that big data is a valuable tool that has already had a critical impact in certain areas. For instance, almost every successful artificial intelligence computer program in the last 20 years, from Google’s search engine to the I.B.M. “Jeopardy!” champion Watson, has involved the substantial crunching of large bodies of data. But precisely because of its newfound popularity and growing use, we need to be levelheaded about what big data can — and can’t — do.

The first thing to note is that although big data is very good at detecting correlations, especially subtle correlations that an analysis of smaller data sets might miss, it never tells us which correlations are meaningful. A big data analysis might reveal, for instance, that from 2006 to 2011 the United States murder rate was well correlated with the market share of Internet Explorer: Both went down sharply. But it’s hard to imagine there is any causal relationship between the two. Likewise, from 1998 to 2007 the number of new cases of autism diagnosed was extremely well correlated with sales of organic food (both went up sharply), but identifying the correlation won’t by itself tell us whether diet has anything to do with autism.

Second, big data can work well as an adjunct to scientific inquiry but rarely succeeds as a wholesale replacement. Molecular biologists, for example, would very much like to be able to infer the three-dimensional structure of proteins from their underlying DNA sequence, and scientists working on the problem use big data as one tool among many. But no scientist thinks you can solve this problem by crunching data alone, no matter how powerful the statistical analysis; you will always need to start with an analysis that relies on an understanding of physics and biochemistry.

Third, many tools that are based on big data can be easily gamed. For example, big data programs for grading student essays often rely on measures like sentence length and word sophistication, which are found to correlate well with the scores given by human graders. But once students figure out how such a program works, they start writing long sentences and using obscure words, rather than learning how to actually formulate and write clear, coherent text. Even Google’s celebrated search engine, rightly seen as a big data success story, is not immune to “Google bombing” and “spamdexing,” wily techniques for artificially elevating website search placement.

Fourth, even when the results of a big data analysis aren’t intentionally gamed, they often turn out to be less robust than they initially seem. Consider Google Flu Trends, once the poster child for big data. In 2009, Google reported — to considerable fanfare — that by analyzing flu-related search queries, it had been able to detect the spread of the flu as accurately and more quickly than the Centers for Disease Control and Prevention. A few years later, though, Google Flu Trends began to falter; for the last two years it has made more bad predictions than good ones.

As a recent article in the journal Science explained, one major contributing cause of the failures of Google Flu Trends may have been that the Google search engine itself constantly changes, such that patterns in data collected at one time do not necessarily apply to data collected at another time. As the statistician Kaiser Fung has noted, collections of big data that rely on web hits often merge data that was collected in different ways and with different purposes — sometimes to ill effect. It can be risky to draw conclusions from data sets of this kind.

A fifth concern might be called the echo-chamber effect, which also stems from the fact that much of big data comes from the web. Whenever the source of information for a big data analysis is itself a product of big data, opportunities for vicious cycles abound. Consider translation programs like Google Translate, which draw on many pairs of parallel texts from different languages — for example, the same Wikipedia entry in two different languages — to discern the patterns of translation between those languages. This is a perfectly reasonable strategy, except for the fact that with some of the less common languages, many of the Wikipedia articles themselves may have been written using Google Translate. In those cases, any initial errors in Google Translate infect Wikipedia, which is fed back into Google Translate, reinforcing the error.

A sixth worry is the risk of too many correlations. If you look 100 times for correlations between two variables, you risk finding, purely by chance, about five bogus correlations that appear statistically significant — even though there is no actual meaningful connection between the variables. Absent careful supervision, the magnitudes of big data can greatly amplify such errors.

Seventh, big data is prone to giving scientific-sounding solutions to hopelessly imprecise questions. In the past few months, for instance, there have been two separate attempts to rank people in terms of their “historical importance” or “cultural contributions,” based on data drawn from Wikipedia. One is the book “Who’s Bigger? Where Historical Figures Really Rank,” by the computer scientist Steven Skiena and the engineer Charles Ward. The other is an M.I.T. Media Lab project called Pantheon.

Both efforts get many things right — Jesus, Lincoln and Shakespeare were surely important people — but both also make some egregious errors. “Who’s Bigger?” claims that Francis Scott Key was the 19th most important poet in history; Pantheon has claimed that Nostradamus was the 20th most important writer in history, well ahead of Jane Austen (78th) and George Eliot (380th). Worse, both projects suggest a misleading degree of scientific precision with evaluations that are inherently vague, or even meaningless. Big data can reduce anything to a single number, but you shouldn’t be fooled by the appearance of exactitude.

FINALLY, big data is at its best when analyzing things that are extremely common, but often falls short when analyzing things that are less common. For instance, programs that use big data to deal with text, such as search engines and translation programs, often rely heavily on something called trigrams: sequences of three words in a row (like “in a row”). Reliable statistical information can be compiled about common trigrams, precisely because they appear frequently. But no existing body of data will ever be large enough to include all the trigrams that people might use, because of the continuing inventiveness of language.

To select an example more or less at random, a book review that the actor Rob Lowe recently wrote for this newspaper contained nine trigrams such as “dumbed-down escapist fare” that had never before appeared anywhere in all the petabytes of text indexed by Google. To witness the limitations that big data can have with novelty, Google-translate “dumbed-down escapist fare” into German and then back into English: out comes the incoherent “scaled-flight fare.” That is a long way from what Mr. Lowe intended — and from big data’s aspirations for translation.

Wait, we almost forgot one last problem: the hype….

Smart cities are here today — and getting smarter


Computer World: “Smart cities aren’t a science fiction, far-off-in-the-future concept. They’re here today, with municipal governments already using technologies that include wireless networks, big data/analytics, mobile applications, Web portals, social media, sensors/tracking products and other tools.
These smart city efforts have lofty goals: Enhancing the quality of life for citizens, improving government processes and reducing energy consumption, among others. Indeed, cities are already seeing some tangible benefits.
But creating a smart city comes with daunting challenges, including the need to provide effective data security and privacy, and to ensure that myriad departments work in harmony.

The global urban population is expected to grow approximately 1.5% per year between 2025 and 2030, mostly in developing countries, according to the World Health Organization.

What makes a city smart? As with any buzz term, the definition varies. But in general, it refers to using information and communications technologies to deliver sustainable economic development and a higher quality of life, while engaging citizens and effectively managing natural resources.
Making cities smarter will become increasingly important. For the first time ever, the majority of the world’s population resides in a city, and this proportion continues to grow, according to the World Health Organization, the coordinating authority for health within the United Nations.
A hundred years ago, two out of every 10 people lived in an urban area, the organization says. As recently as 1990, less than 40% of the global population lived in a city — but by 2010 more than half of all people lived in an urban area. By 2050, the proportion of city dwellers is expected to rise to 70%.
As many city populations continue to grow, here’s what five U.S. cities are doing to help manage it all:

Scottsdale, Ariz.

The city of Scottsdale, Ariz., has several initiatives underway.
One is MyScottsdale, a mobile application the city deployed in the summer of 2013 that allows citizens to report cracked sidewalks, broken street lights and traffic lights, road and sewer issues, graffiti and other problems in the community….”

Facebook’s Connectivity Lab will develop advanced technology to provide internet across the world


and at GigaOm: “The Internet.org initiative will rely on a new team at Facebook called the Connectivity Lab, based at the company’s Menlo Park campus, to develop technology on the ground, in the air and in space, CEO Mark Zuckerberg announced Thursday. The team will develop technology like drones and satellites to expand access to the internet across the world.
“The team’s approach is based on the principle that different sized communities need different solutions and they are already working on new delivery platforms—including planes and satellites—to provide connectivity for communities with different population densities,” a post on Internet.org says.
Internet.org, which is backed by companies like Facebook, Samsung and Qualcomm, wants to provide internet to the two thirds of the world that remains disconnected due to cost, lack of infrastructure or remoteness. While many companies are  developing business models and partnerships in areas that lack internet, the Connectivity Lab will focus on sustainable technology that will transmit the signals. Facebook envisions using drones that could fly for months to connect suburban areas, while more rural areas would rely on satellites. Both would use infrared lasers to blanket whole areas with connectivity.
Members of the Connectivity Lab have backgrounds at NASA’s Jet Propulsion Laboratory, NASA’s Ames Research Center and the National Optical Astronomy Observatory. Facebook also confirmed today that it acquired five employees from Ascenta, a U.K.-based company that worked on the Zephyr–a solar-powered drone capable of flying for two weeks straight.
The lab’s work will build on work the company has already done in the Philippines and Paraguay, Zuckerberg said in a Facebook post. And, like the company’s Open Compute project, there is a possibility that the lab will seek partnerships with outside countries once the bulk of the technology has been developed.”

Why Are Rich Countries Democratic?


Ricardo Hausmann at Project Syndicate: “When Adam Smith was 22, he famously proclaimed that, “Little else is requisite to carry a state to the highest degree of opulence from the lowest barbarism, but peace, easy taxes, and a tolerable administration of justice: all the rest being brought about by the natural course of things.” Today, almost 260 years later, we know that nothing could be further from the truth.
The disappearance of Malaysia Airlines Flight 370 shows how wrong Smith was, for it highlights the intricate interaction between modern production and the state. To make air travel feasible and safe, states ensure that pilots know how to fly and that aircraft pass stringent tests. They build airports and provide radar and satellites that can track planes, air traffic controllers to keep them apart, and security services to keep terrorists on the ground. And, when something goes wrong, it is not peace, easy taxes, and justice that are called in to assist; it is professional, well-resourced government agencies.
All advanced economies today seem to need much more than the young Smith assumed. And their governments are not only large and complex, comprising thousands of agencies that administer millions of pages of rules and regulations; they are also democratic – and not just because they hold elections every so often. Why?
By the time he published The Wealth of Nations, at age 43, Smith had become the first complexity scientist. He understood that the economy was a complex system that needed to coordinate the work of thousands of people just to make things as simple as a meal or a suit.
But Smith also understood that while the economy was too intricate to be organized by anybody, it has the capacity to self-organize. It possesses an “invisible hand,” which operates through market prices to provide an information system that can be used to calculate whether using resources for a given purpose is worthwhile – that is, profitable.
Profit is an incentive system that leads firms and individuals to respond to the information provided by prices. And capital markets are a resource-mobilization system that provides money to those companies and projects that are expected to be profitable – that is, the ones that respond adequately to market prices.
But modern production requires many inputs that markets do not provide. And, as in the case of airlines, these inputs – rules, standards, certifications, infrastructure, schools and training centers, scientific labs, security services, among others – are deeply complementary to the ones that can be procured in markets. They interact in the most intricate ways with the activities that markets organize.
So here’s the question: Who controls the provision of the publicly provided inputs? The prime minister? The legislature? Which country’s top judges have read the millions of pages of legislation or considered how they complement or contradict each other, much less applied them to the myriad different activities that comprise the economy? Even a presidential executive cannot be fully aware of the things that are done or not done by the thousands of government agencies and how they affect each part of society.
This is an information-rich problem, and, like the social-coordination challenge that the market addresses, it does not allow for centralized control. What is needed is something like the invisible hand of the market: a mechanism for self-organization. Elections clearly are not enough, because they typically occur at two- or four-year intervals and collect very little information per voter.
Instead, successful political systems have had to create an alternative invisible hand – a system that decentralizes the power to identify problems, propose solutions, and monitor performance, such that decisions are made with much more information.
To take just one example, the United States’ federal government accounts for just 537 of the country’s roughly 500,000 elected positions. Clearly, there is much more going on elsewhere.
The US Congress has 100 senators with 40 aides each, and 435 representatives with 25 aides each. They are organized into 42 committees and 182 subcommittees, meaning that there are 224 parallel conversations going on. And this group of more than 15,000 people is not alone. Facing them are some 22,000 registered lobbyists, whose mission is (among other goals) to sit down with legislators and draft legislation.
This, together with a free press, is part of the structure that reads the millions of pages of legislation and monitors what government agencies do and do not do. It generates the information and the incentives to respond to it. It affects the allocation of budgetary resources. It is an open system in which anybody can create news or find a lobbyist to make his case, whether it is to save the whales or to eat them.
Without such a mechanism, the political system cannot provide the kind of environment that modern economies need. That is why all rich countries are democracies, and it is why some countries, like my own (Venezuela), are becoming poorer. Although some of these countries do hold elections, they tend to stumble at even the simplest of coordination problems. Lining up to vote is no guarantee that citizens will not also have to line up for toilet paper.”

Open Data: What Is It and Why Should You Care?


Jason Shueh at Government Technology: “Though the debate about open data in government is an evolving one, it is indisputably here to stay — it can be heard in both houses of Congress, in state legislatures, and in city halls around the nation.
Already, 39 states and 46 localities provide data sets to data.gov, the federal government’s online open data repository. And 30 jurisdictions, including the federal government, have taken the additional step of institutionalizing their practices in formal open data policies.
Though the term “open data” is spoken of frequently — and has been since President Obama took office in 2009 — what it is and why it’s important isn’t always clear. That’s understandable, perhaps, given that open data lacks a unified definition.
“People tend to conflate it with big data,” said Emily Shaw, the national policy manager at the Sunlight Foundation, “and I think it’s useful to think about how it’s different from big data in the sense that open data is the idea that public information should be accessible to the public online.”
Shaw said the foundation, a Washington, D.C., non-profit advocacy group promoting open and transparent government, believes the term open data can be applied to a variety of information created or collected by public entities. Among the benefits of open data are improved measurement of policies, better government efficiency, deeper analytical insights, greater citizen participation, and a boost to local companies by way of products and services that use government data (think civic apps and software programs).
“The way I personally think of open data,” Shaw said, “is that it is a manifestation of the idea of open government.”

What Makes Data Open

For governments hoping to adopt open data in policy and in practice, simply making data available to the public isn’t enough to make that data useful. Open data, though straightforward in principle, requires a specific approach based on the agency or organization releasing it, the kind of data being released and, perhaps most importantly, its targeted audience.
According to the foundation’s California Open Data Handbook, published in collaboration with Stewards of Change Institute, a national group supporting innovation in human services, data must first be both “technically open” and “legally open.” The guide defines the terms in this way:
Technically open: [data] available in a machine-readable standard format, which means it can be retrieved and meaningfully processed by a computer application
Legally open: [data] explicitly licensed in a way that permits commercial and non-commercial use and re-use without restrictions.
Technically open means that data is easily accessible to its intended audience. If the intended users are developers and programmers, Shaw said, the data should be presented within an application programming interface (API); if it’s intended for researchers in academia, data might be structured in a bulk download; and if it’s aimed at the average citizen, data should be available without requiring software purchases.
….

4 Steps to Open Data

Creating open data isn’t without its complexities. There are many tasks that need to happen before an open data project ever begins. A full endorsement from leadership is paramount. Adding the project into the work flow is another. And allaying fears and misunderstandings is expected with any government project.
After the basic table stakes are placed, the handbook prescribes four steps: choosing a set of data, attaching an open license, making it available through a proper format and ensuring the data is discoverable.
1. Choose a Data Set
Choosing a data set can appear daunting, but it doesn’t have to be. Shaw said ample resources are available from the foundation and others on how to get started with this — see our list of open data resources for more information. In the case of selecting a data set, or sets, she referred to the foundation’s recently updated guidelines that urge identifying data sets based on goals and the demand from citizen feedback.
2. Attach an Open License
Open licenses dispel ambiguity and encourage use. However, they need to be proactive, and this means users should not be forced to request the information in order to use it — a common symptom of data accessed through the Freedom of Information Act. Tips for reference can be found at Opendefinition.org, a site that has a list of examples and links to open licenses that meet the definition of open use.
3. Format the Data to Your Audience
As previously stated, Shaw recommends tailoring the format of data to the audience, with the ideal being that data is packaged in formats that can be digested by all users: developers, civic hackers, department staff, researchers and citizens. This could mean it’s put into APIs, spreadsheet docs, text and zip files, FTP servers and torrent networking systems (a way to download files from different sources). The file type and the system for download all depends on the audience.
“Part of learning about what formats government should offer data in is to engage with the prospective users,” Shaw said.
4. Make it Discoverable
If open data is strewn across multiple download links and wedged into various nooks and crannies of a website, it probably won’t be found. Shaw recommends a centralized hub that acts as a one-stop shop for all open data downloads. In many jurisdictions, these Web pages and websites have been called “portals;” they are the online repositories for a jurisdiction’s open data publishing.
“It is important for thinking about how people can become aware of what their governments hold. If the government doesn’t make it easy for people to know what kinds of data is publicly available on the website, it doesn’t matter what format it’s in,” Shaw said. She pointed to public participation — a recurring theme in open data development — to incorporate into the process to improve accessibility.
 
Examples of portals, can be found in numerous cities across the U.S., such as San Francisco, New York, Los Angeles, Chicago and Sacramento, Calif.
Visit page 2 of our story for open data resources, and page 3 for open data file formats.

“Government Entrepreneur” is Not an Oxymoron


Mitchell Weiss in Harvard Business Review Blog: “Entrepreneurship almost always involves pushing against the status quo to capture opportunities and create value. So it shouldn’t be surprising when a new business model, such as ridesharing, disrupts existing systems and causes friction between entrepreneurs and local government officials, right?
But imagine if the road that led to the Seattle City Council ridesharing hearings this month — with rulings that sharply curtail UberX, Lyft, and Sidecar’s operations there — had been a vastly different one.  Imagine that public leaders had conceived and built a platform to provide this new, shared model of transit.  Or at the very least, that instead of having a revolution of the current transit regime done to Seattle public leaders, it was done with them.  Amidst the acrimony, it seems hard to imagine that public leaders could envision and operate such a platform, or that private innovators could work with them more collaboratively on it — but it’s not impossible. What would it take? Answer: more public entrepreneurs.
The idea of ”public entrepreneurship” may sound to you like it belongs on a list of oxymorons right alongside “government intelligence.” But it doesn’t.  Public entrepreneurs around the world are improving our lives, inventing entirely new ways to serve the public.   They are using sensors to detect potholes; word pedometers to help students learn; harnessing behavioral economics to encourage organ donation; crowdsourcing patent review; and transforming Medellin, Colombia with cable cars. They are coding in civic hackathons and competing in the Bloomberg challenge.  They are partnering with an Office of New Urban Mechanics in Boston or in Philadelphia, co-developing products in San Francisco’s Entrepreneurship-in-Residence program, or deploying some of the more than $430 million invested into civic-tech in the last two years.
There is, however, a big problem with public entrepreneurs: there just aren’t enough of them.  Without more public entrepreneurship, it’s hard to imagine meeting our public challenges or making the most of private innovation. One might argue that bungled healthcare website roll-outs or internet spying are evidence of too much activity on the part of public leaders, but I would argue that what they really show is too little entrepreneurial skill and judgment.
The solution to creating more public entrepreneurs is straightforward: train them. But, by and large, we don’t.  Consider Howard Stevenson’s definition of entrepreneurship: “the pursuit of opportunity without regard to resources currently controlled.” We could teach that approach to people heading towards the public sector. But now consider the following list of terms: “acknowledgement of multiple constituencies,” “risk reduction,” “formal planning,” “coordination,” “efficiency measures,” “clearly defined responsibility,” and “organizational culture.” It reads like a list of the kinds of concepts we would want a new public official to know; like it might be drawn from an interview evaluation form or graduate school syllabus.  In fact, it’s from Stevenson’s list of pressures that pull managers away from entrepreneurship and towards administration.  Of course, that’s not all bad. We must have more great public administrators.  But with all our challenges and amidst all the dynamism, we are going to need more than analysts and strategists in the public sector, we need inventors and builders, too.
Public entrepreneurship is not simply innovation in the public sector (though it makes use of innovation), and it’s not just policy reform (though it can help drive reform).  Public entrepreneurs build something from nothing with resources — be they financial capital or human talent or new rules — they didn’t command. In Boston, I worked with many amazing public managers and a handful of outstanding public entrepreneurs.  Chris Osgood and Nigel Jacob brought the country’s first major-city mobile 311 app to life, and they are public entrepreneurs.   They created Citizens Connect in 2009 by bringing together iPhones on loan together with a local coder and the most under-tapped resource in the public sector: the public.  They transformed the way basic neighborhood issues are reported and responded to (20% of all constituent cases in Boston are reported over smartphones now), and their model is now accessible to 40 towns in Massachusetts and cities across the country.  The Mayor’s team in Boston that started-up the One Fund in the days after the Marathon bombings were public entrepreneurs.  We built the organization from PayPal and a Post Office Box, and it went on to channel $61 million from donors to victims and survivors in just 75 days. It still operates today….
It’s worth noting that public entrepreneurship, perhaps newly buzzworthy, is not actually new. Elinor Ostrom (44 years before her Nobel Prize) observed public entrepreneurs inventing new models in the 1960s. Back when Ronald Reagan was president, Peter Drucker wrote that it was entrepreneurship that would keep public service “flexible and self-renewing.” And almost two decades have passed since David Osborne and Ted Gaebler’s “Reinventing Government” (the then handbook for public officials) carried the promising subtitle: “How the Entrepreneurial Spirit is Transforming the Public Sector”.  Public entrepreneurship, though not nearly as widespread as its private complement, or perhaps as fashionable as its “social” counterpart (focussed on non-profits and their ecosystem), has been around for a while and so have those who practiced it.
But still today, we mostly train future public leaders to be public administrators. We school them in performance management and leave them too inclined to run from risk instead of managing it. And we communicate often, explicitly or not, to private entrepreneurs that government officials are failures and dinosaurs.  It’s easy to see how that road led to Seattle this month, but hard see how it empowers public officials to take on the enormous challenges that still lie ahead of us, or how it enables the public to help them.”

Big data: are we making a big mistake?


Tim Harford in the Financial Times: “Cheerleaders for big data have made four exciting claims, each one reflected in the success of Google Flu Trends: that data analysis produces uncannily accurate results; that every single data point can be captured, making old statistical sampling techniques obsolete; that it is passé to fret about what causes what, because statistical correlation tells us what we need to know; and that scientific or statistical models aren’t needed because, to quote “The End of Theory”, a provocative essay published in Wired in 2008, “with enough data, the numbers speak for themselves”. Unfortunately, these four articles of faith are at best optimistic oversimplifications. At worst, according to David Spiegelhalter, Winton Professor of the Public Understanding of Risk at Cambridge university, they can be “complete bollocks. Absolute nonsense.”…
But big data do not solve the problem that has obsessed statisticians and scientists for centuries: the problem of insight, of inferring what is going on, and figuring out how we might intervene to change a system for the better.
“We have a new resource here,” says Professor David Hand of Imperial College London. “But nobody wants ‘data’. What they want are the answers.”
To use big data to produce such answers will require large strides in statistical methods.
“It’s the wild west right now,” says Patrick Wolfe of UCL. “People who are clever and driven will twist and turn and use every tool to get sense out of these data sets, and that’s cool. But we’re flying a little bit blind at the moment.”
Statisticians are scrambling to develop new methods to seize the opportunity of big data. Such new methods are essential but they will work by building on the old statistical lessons, not by ignoring them.
Recall big data’s four articles of faith. Uncanny accuracy is easy to overrate if we simply ignore false positives, as with Target’s pregnancy predictor. The claim that causation has been “knocked off its pedestal” is fine if we are making predictions in a stable environment but not if the world is changing (as with Flu Trends) or if we ourselves hope to change it. The promise that “N = All”, and therefore that sampling bias does not matter, is simply not true in most cases that count. As for the idea that “with enough data, the numbers speak for themselves” – that seems hopelessly naive in data sets where spurious patterns vastly outnumber genuine discoveries.
“Big data” has arrived, but big insights have not. The challenge now is to solve new problems and gain new answers – without making the same old statistical mistakes on a grander scale than ever.”