Citizen Science for Citizen Access to Law


Paper by Michael Curtotti, Wayne Weibel, Eric McCreath, Nicolas Ceynowa, Sara Frug, and Tom R Bruce: “This paper sits at the intersection of citizen access to law, legal informatics and plain language. The paper reports the results of a joint project of the Cornell University Legal Information Institute and the Australian National University which collected thousands of crowdsourced assessments of the readability of law through the Cornell LII site. The aim of the project is to enhance accuracy in the prediction of the readability of legal sentences. The study requested readers on legislative pages of the LII site to rate passages from the United States Code and the Code of Federal Regulations and other texts for readability and other characteristics. The research provides insight into who uses legal rules and how they do so. The study enables conclusions to be drawn as to the current readability of law and spread of readability among legal rules. The research is intended to enable the creation of a dataset of legal rules labelled by human judges as to readability. Such a dataset, in combination with machine learning, will assist in identifying factors in legal language which impede readability and access for citizens. As far as we are aware, this research is the largest ever study of readability and usability of legal language and the first research which has applied crowdsourcing to such an investigation. The research is an example of the possibilities open for enhancing access to law through engagement of end users in the online legal publishing environment for enhancement of legal accessibility and through collaboration between legal publishers and researchers….(More)”

The End of Asymmetric Information


Essay by Alex Tabarrok and Tyler Cowen: Might the age of asymmetric information – for better or worse – be over?  Market institutions are rapidly evolving to a situation where very often the buyer and the seller have roughly equal knowledge. Technological developments are giving everyone who wants it access to the very best information when it comes to product quality, worker performance, matches to friends and partners, and the nature of financial transactions, among many other areas.

These developments will have implications for how markets work, how much consumers benefit, and also economic policy and the law. As we will see, there may be some problematic sides to these new arrangements, specifically when it comes to privacy. Still, a large amount of economic regulation seems directed at a set of problems which, in large part, no longer exist…

Many “public choice” problems are really problems of asymmetric information. In William Niskanen’s (1974) model of bureaucracy, government workers usually benefit from larger bureaus, and they are able to expand their bureaus to inefficient size because they are the primary providers of information to politicians. Some bureaus, such as the NSA and the CIA, may still be able to use secrecy to benefit from information asymmetry. For instance they can claim to politicians that they need more resources to deter or prevent threats, and it is hard for the politicians to have well-informed responses on the other side of the argument. Timely, rich information about most other bureaucracies, however, is easily available to politicians and increasingly to the public as well. As information becomes more symmetric, Niskanen’s (1974) model becomes less applicable, and this may help check the growth of unneeded bureaucracy.

Cheap sensors are greatly extending how much information can be economically gathered and analyzed. It’s not uncommon for office workers to have every key stroke logged. When calling customer service, who has not been told “this call may be monitored for quality control purposes?” Service-call workers have their location tracked through cell phones. Even information that once was thought to be purely subjective can now be collected and analyzed, often with the aid of smart software or artificial intelligence. One firm, for example, uses badges equipped with microphones, accelerometers, and location sensors to measure tone of voice, posture, and body language, as well as who spoke to whom and for how long (Lohr 2014). The purpose is not only to monitor workers but to deduce when, where and why workers are the most productive. We are again seeing trade-offs which bring greater productivity, and limit asymmetric information, albeit at the expense of some privacy.

As information becomes more prevalent and symmetric, earlier solutions to asymmetric problems will become less necessary. When employers do not easily observe workers, for example, employers may pay workers unusually high wages, generating a rent. Workers will then work at high levels despite infrequent employer observation, to maintain their future rents (Shapiro and Stiglitz 1984). But those higher wages involved a cost, namely that fewer workers were hired, and the hires that were made often were directed to people who were already known to the firm. Better monitoring of workers will mean that employers will hire more people and furthermore they may be more willing to take chances on risky outsiders, rather than those applicants who come with impeccable pedigree. If the outsider does not work out and produce at an acceptable level, it is easy enough to figure this out and fire them later on….(More)”

Big Data for Social Good


Introduction to a Special Issue of the Journal “Big Data” by Catlett Charlie and Ghani Rayid: “…organizations focused on social good are realizing the potential as well but face several challenges as they seek to become more data-driven. The biggest challenge they face is a paucity of examples and case studies on how data can be used for social good. This special issue of Big Data is targeted at tackling that challenge and focuses on highlighting some exciting and impactful examples of work that uses data for social good. The special issue is just one example of the recent surge in such efforts by the data science community. …

This special issue solicited case studies and problem statements that would either highlight (1) the use of data to solve a social problem or (2) social challenges that need data-driven solutions. From roughly 20 submissions, we selected 5 articles that exemplify this type of work. These cover five broad application areas: international development, healthcare, democracy and government, human rights, and crime prevention.

“Understanding Democracy and Development Traps Using a Data-Driven Approach” (Ranganathan et al.) details a data-driven model between democracy, cultural values, and socioeconomic indicators to identify a model of two types of “traps” that hinder the development of democracy. They use historical data to detect causal factors and make predictions about the time expected for a given country to overcome these traps.

“Targeting Villages for Rural Development Using Satellite Image Analysis” (Varshney et al.) discusses two case studies that use data and machine learning techniques for international economic development—solar-powered microgrids in rural India and targeting financial aid to villages in sub-Saharan Africa. In the process, the authors stress the importance of understanding the characteristics and provenance of the data and the criticality of incorporating local “on the ground” expertise.

In “Human Rights Event Detection from Heterogeneous Social Media Graphs,” Chen and Neil describe efficient and scalable techniques to use social media in order to detect emerging patterns in human rights events. They test their approach on recent events in Mexico and show that they can accurately detect relevant human rights–related tweets prior to international news sources, and in some cases, prior to local news reports, which could potentially lead to more timely, targeted, and effective advocacy by relevant human rights groups.

“Finding Patterns with a Rotten Core: Data Mining for Crime Series with Core Sets” (Wang et al.) describes a case study with the Cambridge Police Department, using a subspace clustering method to analyze the department’s full housebreak database, which contains detailed information from thousands of crimes from over a decade. They find that the method allows human crime analysts to handle vast amounts of data and provides new insights into true patterns of crime committed in Cambridge…..(More)

Data scientists rejoice! There’s an online marketplace selling algorithms from academics


SiliconRepublic: “Algorithmia, an online marketplace that connects computer science researchers’ algorithms with developers who may have uses for them, has exited its private beta.

Algorithms are essential to our online experience. Google uses them to determine which search results are the most relevant. Facebook uses them to decide what should appear in your news feed. Netflix uses them to make movie recommendations.

Founded in 2013, Algorithmia could be described as an app store for algorithms, with over 800 of them available in its library. These algorithms provide the means of completing various tasks in the fields of machine learning, audio and visual processing, and computer vision.

Algorithmia found a way to monetise algorithms by creating a platform where academics can share their creations and charge a royalty fee per use, while developers and data scientists can request specific algorithms in return for a monetary reward. One such suggestion is for ‘punctuation prediction’, which would insert correct punctuation and capitalisation in speech-to-text translation.

While it’s not the first algorithm marketplace online, Algorithmia will accept and sell any type of algorithm and host them on its servers. What this means is that developers need only add a simple piece of code to their software in order to send a query to Algorithmia’s servers, so the algorithm itself doesn’t have to be integrated in its entirety….

Computer science researchers can spend years developing algorithms, only for them to be published in a scientific journal never to be read by software engineers.

Algorithmia intends to create a community space where academics and engineers can meet to discuss and refine these algorithms for practical use. A voting and commenting system on the site will allow users to engage and even share insights on how contributions can be improved.

To that end, Algorithmia’s ultimate goal is to advance the development of algorithms as well as their discovery and use….(More)”

Encyclopedia of Social Network Analysis and Mining


“The Encyclopedia of Social Network Analysis and Mining (ESNAM) is the first major reference work to integrate fundamental concepts and research directions in the areas of social networks and  applications to data mining. While ESNAM  reflects the state-of-the-art in  social network research, the field  had its start in the 1930s when fundamental issues in social network research were broadly defined. These communities were limited to relatively small numbers of nodes (actors) and links. More recently the advent of electronic communication, and in particular on-line communities, have created social networks of hitherto unimaginable sizes. People around the world are directly or indirectly connected by popular social networks established using web-based platforms rather than by physical proximity.

Reflecting the interdisciplinary nature of this unique field, the essential contributions of diverse disciplines, from computer science, mathematics, and statistics to sociology and behavioral science, are described among the 300 authoritative yet highly readable entries. Students will find a world of information and insight behind the familiar façade of the social networks in which they participate. Researchers and practitioners will benefit from a comprehensive perspective on the methodologies for analysis of constructed networks, and the data mining and machine learning techniques that have proved attractive for sophisticated knowledge discovery in complex applications. Also addressed is the application of social network methodologies to other domains, such as web networks and biological networks….(More)”

Making emotive games from open data


Katie Collins at WIRED: “Microsoft researcher Kati London’s aim is “to try to get people to think of data in terms of personalities, relationships and emotions”, she tells the audience at the Story Festival in London. Through Project Sentient Data, she uses her background in games development to create fun but meaningful experiences that bridge online interactions and things that are happening in the real world.
One such experience invited children to play against the real-time flow of London traffic through an online game called the Code of Everand. The aim was to test the road safety knowledge of 9-11 year olds and “make alertness something that kids valued”.
The core mechanic of the game was that of a normal world populated by little people, containing spirit channels that only kids could see and go through. Within these spirit channels, everything from lorries and cars from the streets became monsters. The children had to assess what kind of dangers the monsters posed and use their tools to dispel them.
“Games are great ways to blur and observe the ways people interact with real-world data,” says London.
In one of her earlier projects back in 2005, London used her knowledge of horticulture to bring artificial intelligence to plants. “Almost every workspace I go into has a half dead plant in it, so we gave plants the ability to tell us what they need.” It was, she says, an exercise in “humanising data” that led to further projects that saw her create self aware street signs and a dynamic city map that expressed shame neighbourhood by neighbourhood depending on the open dataset of public complaints in New York.
A further project turned complaint data into cartoons on Instagram every week. London praised the open data initiative in New York, but added that for people to access it, they had to know it existed and know where to find it. The cartoons were a “lightweight” form of “civic engagement” that helped to integrate hyperlocal issues into everyday conversation.
London also gamified community engagement through a project commissioned by the Knight Foundation called Macon Money….(More)”.

Cultures of Code


Brian Hayes in the American Scientist: “Kim studies parallel algorithms, designed for computers with thousands of processors. Chris builds computer simulations of fluids in motion, such as ocean currents. Dana creates software for visualizing geographic data. These three people have much in common. Computing is an essential part of their professional lives; they all spend time writing, testing, and debugging computer programs. They probably rely on many of the same tools, such as software for editing program text. If you were to look over their shoulders as they worked on their code, you might not be able to tell who was who.
Despite the similarities, however, Kim, Chris, and Dana were trained in different disciplines, and they belong to  different intellectual traditions and communities. Kim, the parallel algorithms specialist, is a professor in a university department of computer science. Chris, the fluids modeler, also lives in the academic world, but she is a physicist by training; sometimes she describes herself as a computational scientist (which is not the same thing as a computer scientist). Dana has been programming since junior high school but didn’t study computing in college; at the startup company where he works, his title is software developer.
These factional divisions run deeper than mere specializations. Kim, Chris, and Dana belong to different professional societies, go to different conferences, read different publications; their paths seldom cross. They represent different cultures. The resulting Balkanization of computing seems unwise and unhealthy, a recipe for reinventing wheels and making the same mistake three times over. Calls for unification go back at least 45 years, but the estrangement continues. As a student and admirer of all three fields, I find the standoff deeply frustrating.
Certain areas of computation are going through a period of extraordinary vigor and innovation. Machine learning, data analysis, and programming for the web have all made huge strides. Problems that stumped earlier generations, such as image recognition, finally seem to be yielding to new efforts. The successes have drawn more young people into the field; suddenly, everyone is “learning to code.” I am cheered by (and I cheer for) all these events, but I also want to whisper a question: Will the wave of excitement ever reach other corners of the computing universe?…
What’s the difference between computer science, computational science, and software development?…(More)”

Big Data Now


at Radar – O’Reilly: “In the four years we’ve been producing Big Data Now, our wrap-up of important developments in the big data field, we’ve seen tools and applications mature, multiply, and coalesce into new categories. This year’s free wrap-up of Radar coverage is organized around seven themes:

  • Cognitive augmentation: As data processing and data analytics become more accessible, jobs that can be automated will go away. But to be clear, there are still many tasks where the combination of humans and machines produce superior results.
  • Intelligence matters: Artificial intelligence is now playing a bigger and bigger role in everyone’s lives, from sorting our email to rerouting our morning commutes, from detecting fraud in financial markets to predicting dangerous chemical spills. The computing power and algorithmic building blocks to put AI to work have never been more accessible.
  • The convergence of cheap sensors, fast networks, and distributed computation: The amount of quantified data available is increasing exponentially — and aside from tools for centrally handling huge volumes of time-series data as it arrives, devices and software are getting smarter about placing their own data accurately in context, extrapolating without needing to ‘check in’ constantly.
  • Reproducing, managing, and maintaining data pipelines: The coordination of processes and personnel within organizations to gather, store, analyze, and make use of data.
  • The evolving, maturing marketplace of big data components: Open-source components like Spark, Kafka, Cassandra, and ElasticSearch are reducing the need for companies to build in-house proprietary systems. On the other hand, vendors are developing industry-specific suites and applications optimized for the unique needs and data sources in a field.
  • The value of applying techniques from design and social science: While data science knows human behavior in the aggregate, design works in the particular, where A/B testing won’t apply — you only get one shot to communicate your proposal to a CEO, for example. Similarly, social science enables extrapolation from sparse data. Both sets of tools enable you to ask the right questions, and scope your problems and solutions realistically.
  • The importance of building a data culture: An organization that is comfortable with gathering data, curious about its significance, and willing to act on its results will perform demonstrably better than one that doesn’t. These priorities must be shared throughout the business.
  • The perils of big data: From poor analysis (driven by false correlation or lack of domain expertise) to intrusiveness (privacy invasion, price profiling, self-fulfilling predictions), big data has negative potential.

Download our free snapshot of big data in 2014, and follow the story this year on Radar.”

Computer-based personality judgments are more accurate than those made by humans


Paper by Wu Youyou, Michal Kosinski and David Stillwell at PNAS (Proceedings of the National Academy of Sciences): “Judging others’ personalities is an essential skill in successful social living, as personality is a key driver behind people’s interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants’ Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy…(More)”.

Businesses dig for treasure in open data


Lindsay Clark in ComputerWeekly: “Open data, a movement which promises access to vast swaths of information held by public bodies, has started getting its hands dirty, or rather its feet.
Before a spade goes in the ground, construction and civil engineering projects face a great unknown: what is down there? In the UK, should someone discover anything of archaeological importance, a project can be halted – sometimes for months – while researchers study the site and remove artefacts….
During an open innovation day hosted by the Science and Technologies Facilities Council (STFC), open data services and technology firm Democrata proposed analytics could predict the likelihood of unearthing an archaeological find in any given location. This would help developers understand the likely risks to construction and would assist archaeologists in targeting digs more accurately. The idea was inspired by a presentation from the Archaeological Data Service in the UK at the event in June 2014.
The proposal won support from the STFC which, together with IBM, provided a nine-strong development team and access to the Hartree Centre’s supercomputer – a 131,000 core high-performance facility. For natural language processing of historic documents, the system uses two components of IBM’s Watson – the AI service which famously won the US TV quiz show Jeopardy. The system uses SPSS modelling software, the language R for algorithm development and Hadoop data repositories….
The proof of concept draws together data from the University of York’s archaeological data, the Department of the Environment, English Heritage, Scottish Natural Heritage, Ordnance Survey, Forestry Commission, Office for National Statistics, the Land Registry and others….The system analyses sets of indicators of archaeology, including historic population dispersal trends, specific geology, flora and fauna considerations, as well as proximity to a water source, a trail or road, standing stones and other archaeological sites. Earlier studies created a list of 45 indicators which was whittled down to seven for the proof of concept. The team used logistic regression to assess the relationship between input variables and come up with its prediction….”