Customers, Users or Citizens? Inclusion, Spatial Data and Governance in the Smart City


Paper by Linnet Taylor, Christine Richter, Shazade Jameson and Carmen Perez de Pulgar: “This report discusses the use and governance of spatial data in Amsterdam’s smart city projects. How much does spatial data tell the city about its people, and how is that likely to change in the next decade? The project focuses especially on those who may be marginalised or challenged by increasing visibility due to the use of big data in the future smart city: various groups were interviewed including immigrants, children, sex workers, opt-outs of smart technologies, and technology developers. They were asked how they felt about their personal ‘data-sphere’, the level of data-awareness and the kind of consultation they would like to see as citizens of a smart city, and how they felt about increasing interaction between the city and private-sector partners around digital data. The report presents a social roadmap for the datafied city’s future, and addresses the question of how the city can build an inclusive and responsive spatial data governance infrastructure….(More)”

Connect the corporate dots to see true transparency


Gillian Tett at the Financial Times: “…In all this, a crucial point is often forgotten: simply amassing data will not solve the problem of transparency. What is also needed is a way for analysts to track the connections that exist between companies scattered across different national jurisdictions.

There are more than 45,000 companies listed on global stock exchanges and, according to Chris Taggart of OpenCorporates, an independent data company, there are between 250m and 400m unlisted groups. Many of these are listed on national registries but, since registries are extremely fragmented, it is very difficult for shareholders or regulators to form a complete picture of company activity.

It also creates financial stability risks. One reason why it is currently hard to track the scale of Chinese corporate debt, say, is that it is being issued by an opaque web of legal entities. Similarly, regulators struggled to cope with the fallout from the Lehman Brothers collapse in 2008 because the bank was operating almost 3,000 different legal entities around the world.

Is there a solution to this? A good place to start would be for governments to put their corporate registries online. Another crucial step would be for governments and companies to agree on a common standard for labelling legal entities, so that these can be tracked across borders.

Happily, work on that has begun: in 2014, the Global Legal Entity Identifier Foundation was created. It supports the implementation and use of “legal entity identifiers”, a data standard that identifies participants in financial transactions. Groups such as the Data Coalition in Washington DC are lobbying for laws that would force companies to use LEIs….However, this inter-governmental project is moving so slowly that the private sector may be a better bet. In recent years, companies such as Dun & Bradstreet have begun to amass proprietary information about complex corporate webs, and computer nerds are also starting to use the power of big data to join up the corporate dots in a public format.

OpenCorporates is a good example. Over the past five years, a dozen staff there have been painstakingly scraping national corporate registries to create a database designed to show how companies are connected around the world. This is far from complete but data from 100m entities have already been logged. And in the wake of the Panama Papers, more governments are coming on board — data from the Cayman Islands are currently being added and France is likely to collaborate soon.

Sadly, these moves will not deliver real transparency straight away. If you type “MIO” into the search box on the OpenCorporates website, you will not see a map of all of McKinsey’s activities — at least not yet.

The good news, however, is that with every data scrape, or use of an LEI, the picture of global corporate activity is becoming slightly less opaque thanks to the work of a hidden army of geeks. They deserve acclaim and support — even (or especially) from management consultants….(More)”

Selected Readings on Data Collaboratives


By Neil Britto, David Sangokoya, Iryna Susha, Stefaan Verhulst and Andrew Young

The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of data collaboratives was originally published in 2017.

The term data collaborative refers to a new form of collaboration, beyond the public-private partnership model, in which participants from different sectors (including private companies, research institutions, and government agencies ) can exchange data to help solve public problems. Several of society’s greatest challenges — from addressing climate change to public health to job creation to improving the lives of children — require greater access to data, more collaboration between public – and private-sector entities, and an increased ability to analyze datasets. In the coming months and years, data collaboratives will be essential vehicles for harnessing the vast stores of privately held data toward the public good.

Selected Reading List (in alphabetical order)

Annotated Selected Readings List (in alphabetical order)

Agaba, G., Akindès, F., Bengtsson, L., Cowls, J., Ganesh, M., Hoffman, N., . . . Meissner, F. “Big Data and Positive Social Change in the Developing World: A White Paper for Practitioners and Researchers.” 2014. http://bit.ly/25RRC6N.

  • This white paper, produced by “a group of activists, researchers and data experts” explores the potential of big data to improve development outcomes and spur positive social change in low- and middle-income countries. Using examples, the authors discuss four areas in which the use of big data can impact development efforts:
    • Advocating and facilitating by “opening[ing] up new public spaces for discussion and awareness building;
    • Describing and predicting through the detection of “new correlations and the surfac[ing] of new questions;
    • Facilitating information exchange through “multiple feedback loops which feed into both research and action,” and
    • Promoting accountability and transparency, especially as a byproduct of crowdsourcing efforts aimed at “aggregat[ing] and analyz[ing] information in real time.
  • The authors argue that in order to maximize the potential of big data’s use in development, “there is a case to be made for building a data commons for private/public data, and for setting up new and more appropriate ethical guidelines.”
  • They also identify a number of challenges, especially when leveraging data made accessible from a number of sources, including private sector entities, such as:
    • Lack of general data literacy;
    • Lack of open learning environments and repositories;
    • Lack of resources, capacity and access;
    • Challenges of sensitivity and risk perception with regard to using data;
    • Storage and computing capacity; and
    • Externally validating data sources for comparison and verification.

Ansell, C. and Gash, A. “Collaborative Governance in Theory and Practice.” Journal of Public Administration Research and  Theory 18 (4), 2008. http://bit.ly/1RZgsI5.

  • This article describes collaborative arrangements that include public and private organizations working together and proposes a model for understanding an emergent form of public-private interaction informed by 137 diverse cases of collaborative governance.
  • The article suggests factors significant to successful partnering processes and outcomes include:
    • Shared understanding of challenges,
    • Trust building processes,
    • The importance of recognizing seemingly modest progress, and
    • Strong indicators of commitment to the partnership’s aspirations and process.
  • The authors provide a ‘’contingency theory model’’ that specifies relationships between different variables that influence outcomes of collaborative governance initiatives. Three “core contingencies’’ for successful collaborative governance initiatives identified by the authors are:
    • Time (e.g., decision making time afforded to the collaboration);
    • Interdependence (e.g., a high degree of interdependence can mitigate negative effects of low trust); and
    • Trust (e.g. a higher level of trust indicates a higher probability of success).

Ballivian A, Hoffman W. “Public-Private Partnerships for Data: Issues Paper for Data Revolution Consultation.” World Bank, 2015. Available from: http://bit.ly/1ENvmRJ

  • This World Bank report provides a background document on forming public-prviate partnerships for data with the private sector in order to inform the UN’s Independent Expert Advisory Group (IEAG) on sustaining a “data revolution” in sustainable development.
  • The report highlights the critical position of private companies within the data value chain and reflects on key elements of a sustainable data PPP: “common objectives across all impacted stakeholders, alignment of incentives, and sharing of risks.” In addition, the report describes the risks and incentives of public and private actors, and the principles needed to “build[ing] the legal, cultural, technological and economic infrastructures to enable the balancing of competing interests.” These principles include understanding; experimentation; adaptability; balance; persuasion and compulsion; risk management; and governance.
  • Examples of data collaboratives cited in the report include HP Earth Insights, Orange Data for Development Challenges, Amazon Web Services, IBM Smart Cities Initiative, and the Governance Lab’s Open Data 500.

Brack, Matthew, and Tito Castillo. “Data Sharing for Public Health: Key Lessons from Other Sectors.” Chatham House, Centre on Global Health Security. April 2015. Available from: http://bit.ly/1DHFGVl

  • The Chatham House report provides an overview on public health surveillance data sharing, highlighting the benefits and challenges of shared health data and the complexity in adapting technical solutions from other sectors for public health.
  • The report describes data sharing processes from several perspectives, including in-depth case studies of actual data sharing in practice at the individual, organizational and sector levels. Among the key lessons for public health data sharing, the report strongly highlights the need to harness momentum for action and maintain collaborative engagement: “Successful data sharing communities are highly collaborative. Collaboration holds the key to producing and abiding by community standards, and building and maintaining productive networks, and is by definition the essence of data sharing itself. Time should be invested in establishing and sustaining collaboration with all stakeholders concerned with public health surveillance data sharing.”
  • Examples of data collaboratives include H3Africa (a collaboration between NIH and Wellcome Trust) and NHS England’s care.data programme.

de Montjoye, Yves-Alexandre, Jake Kendall, and Cameron F. Kerry. “Enabling Humanitarian Use of Mobile Phone Data.” The Brookings Institution, Issues in Technology Innovation. November 2014. Available from: http://brook.gs/1JxVpxp

  • Using Ebola as a case study, the authors describe the value of using private telecom data for uncovering “valuable insights into understanding the spread of infectious diseases as well as strategies into micro-target outreach and driving update of health-seeking behavior.”
  • The authors highlight the absence of a common legal and standards framework for “sharing mobile phone data in privacy-conscientious ways” and recommend “engaging companies, NGOs, researchers, privacy experts, and governments to agree on a set of best practices for new privacy-conscientious metadata sharing models.”

Eckartz, Silja M., Hofman, Wout J., Van Veenstra, Anne Fleur. “A decision model for data sharing.” Vol. 8653 LNCS. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2014. http://bit.ly/21cGWfw.

  • This paper proposes a decision model for data sharing of public and private data based on literature review and three case studies in the logistics sector.
  • The authors identify five categories of the barriers to data sharing and offer a decision model for identifying potential interventions to overcome each barrier:
    • Ownership. Possible interventions likely require improving trust among those who own the data through, for example, involvement and support from higher management
    • Privacy. Interventions include “anonymization by filtering of sensitive information and aggregation of data,” and access control mechanisms built around identity management and regulated access.  
    • Economic. Interventions include a model where data is shared only with a few trusted organizations, and yield management mechanisms to ensure negative financial consequences are avoided.
    • Data quality. Interventions include identifying additional data sources that could improve the completeness of datasets, and efforts to improve metadata.
    • Technical. Interventions include making data available in structured formats and publishing data according to widely agreed upon data standards.

Hoffman, Sharona and Podgurski, Andy. “The Use and Misuse of Biomedical Data: Is Bigger Really Better?” American Journal of Law & Medicine 497, 2013. http://bit.ly/1syMS7J.

  • This journal articles explores the benefits and, in particular, the risks related to large-scale biomedical databases bringing together health information from a diversity of sources across sectors. Some data collaboratives examined in the piece include:
    • MedMining – a company that extracts EHR data, de-identifies it, and offers it to researchers. The data sets that MedMining delivers to its customers include ‘lab results, vital signs, medications, procedures, diagnoses, lifestyle data, and detailed costs’ from inpatient and outpatient facilities.
    • Explorys has formed a large healthcare database derived from financial, administrative, and medical records. It has partnered with major healthcare organizations such as the Cleveland Clinic Foundation and Summa Health System to aggregate and standardize health information from ten million patients and over thirty billion clinical events.
  • Hoffman and Podgurski note that biomedical databases populated have many potential uses, with those likely to benefit including: “researchers, regulators, public health officials, commercial entities, lawyers,” as well as “healthcare providers who conduct quality assessment and improvement activities,” regulatory monitoring entities like the FDA, and “litigants in tort cases to develop evidence concerning causation and harm.”
  • They argue, however, that risks arise based on:
    • The data contained in biomedical databases is surprisingly likely to be incorrect or incomplete;
    • Systemic biases, arising from both the nature of the data and the preconceptions of investigators are serious threats the validity of research results, especially in answering causal questions;
  • Data mining of biomedical databases makes it easier for individuals with political, social, or economic agendas to generate ostensibly scientific but misleading research findings for the purpose of manipulating public opinion and swaying policymakers.

Krumholz, Harlan M., et al. “Sea Change in Open Science and Data Sharing Leadership by Industry.” Circulation: Cardiovascular Quality and Outcomes 7.4. 2014. 499-504. http://1.usa.gov/1J6q7KJ

  • This article provides a comprehensive overview of industry-led efforts and cross-sector collaborations in data sharing by pharmaceutical companies to inform clinical practice.
  • The article details the types of data being shared and the early activities of GlaxoSmithKline (“in coordination with other companies such as Roche and ViiV”); Medtronic and the Yale University Open Data Access Project; and Janssen Pharmaceuticals (Johnson & Johnson). The article also describes the range of involvement in data sharing among pharmaceutical companies including Pfizer, Novartis, Bayer, AbbVie, Eli Llly, AstraZeneca, and Bristol-Myers Squibb.

Mann, Gideon. “Private Data and the Public Good.” Medium. May 17, 2016. http://bit.ly/1OgOY68.

    • This Medium post from Gideon Mann, the Head of Data Science at Bloomberg, shares his prepared remarks given at a lecture at the City College of New York. Mann argues for the potential benefits of increasing access to private sector data, both to improve research and academic inquiry and also to help solve practical, real-world problems. He also describes a number of initiatives underway at Bloomberg along these lines.    
  • Mann argues that data generated at private companies “could enable amazing discoveries and research,” but is often inaccessible to those who could put it to those uses. Beyond research, he notes that corporate data could, for instance, benefit:
      • Public health – including suicide prevention, addiction counseling and mental health monitoring.
    • Legal and ethical questions – especially as they relate to “the role algorithms have in decisions about our lives,” such as credit checks and resume screening.
  • Mann recognizes the privacy challenges inherent in private sector data sharing, but argues that it is a common misconception that the only two choices are “complete privacy or complete disclosure.” He believes that flexible frameworks for differential privacy could open up new opportunities for responsibly leveraging data collaboratives.

Pastor Escuredo, D., Morales-Guzmán, A. et al, “Flooding through the Lens of Mobile Phone Activity.” IEEE Global Humanitarian Technology Conference, GHTC 2014. Available from: http://bit.ly/1OzK2bK

  • This report describes the impact of using mobile data in order to understand the impact of disasters and improve disaster management. The report was conducted in the Mexican state of Tabasco in 2009 as a multidisciplinary, multi-stakeholder consortium involving the UN World Food Programme (WFP), Telefonica Research, Technical University of Madrid (UPM), Digital Strategy Coordination Office of the President of Mexico, and UN Global Pulse.
  • Telefonica Research, a division of the major Latin American telecommunications company, provided call detail records covering flood-affected areas for nine months. This data was combined with “remote sensing data (satellite images), rainfall data, census and civil protection data.” The results of the data demonstrated that “analysing mobile activity during floods could be used to potentially locate damaged areas, efficiently assess needs and allocate resources (for example, sending supplies to affected areas).”
  • In addition to the results, the study highlighted “the value of a public-private partnership on using mobile data to accurately indicate flooding impacts in Tabasco, thus improving early warning and crisis management.”

* Perkmann, M. and Schildt, H. “Open data partnerships between firms and universities: The role of boundary organizations.” Research Policy, 44(5), 2015. http://bit.ly/25RRJ2c

  • This paper discusses the concept of a “boundary organization” in relation to industry-academic partnerships driven by data. Boundary organizations perform mediated revealing, allowing firms to disclose their research problems to a broad audience of innovators and simultaneously minimize the risk that this information would be adversely used by competitors.
  • The authors identify two especially important challenges for private firms to enter open data or participate in data collaboratives with the academic research community that could be addressed through more involvement from boundary organizations:
    • First is a challenge of maintaining competitive advantage. The authors note that, “the more a firm attempts to align the efforts in an open data research programme with its R&D priorities, the more it will have to reveal about the problems it is addressing within its proprietary R&D.”
    • Second, involves the misalignment of incentives between the private and academic field. Perkmann and Schildt argue that, a firm seeking to build collaborations around its opened data “will have to provide suitable incentives that are aligned with academic scientists’ desire to be rewarded for their work within their respective communities.”

Robin, N., Klein, T., & Jütting, J. “Public-Private Partnerships for Statistics: Lessons Learned, Future Steps.” OECD. 2016. http://bit.ly/24FLYlD.

  • This working paper acknowledges the growing body of work on how different types of data (e.g, telecom data, social media, sensors and geospatial data, etc.) can address data gaps relevant to National Statistical Offices (NSOs).
  • Four models of public-private interaction for statistics are describe: in-house production of statistics by a data-provider for a national statistics office (NSO), transfer of data-sets to NSOs from private entities, transfer of data to a third party provider to manage the NSO and private entity data, and the outsourcing of NSO functions.
  • The paper highlights challenges to public-private partnerships involving data (e.g., technical challenges, data confidentiality, risks, limited incentives for participation), suggests deliberate and highly structured approaches to public-private partnerships involving data require enforceable contracts, emphasizes the trade-off between data specificity and accessibility of such data, and the importance of pricing mechanisms that reflect the capacity and capability of national statistic offices.
  • Case studies referenced in the paper include:
    • A mobile network operator’s (MNO Telefonica) in house analysis of call detail records;
    • A third-party data provider and steward of travel statistics (Positium);
    • The Data for Development (D4D) challenge organized by MNO Orange; and
    • Statistics Netherlands use of social media to predict consumer confidence.

Stuart, Elizabeth, Samman, Emma, Avis, William, Berliner, Tom. “The data revolution: finding the missing millions.” Overseas Development Institute, 2015. Available from: http://bit.ly/1bPKOjw

  • The authors of this report highlight the need for good quality, relevant, accessible and timely data for governments to extend services into underrepresented communities and implement policies towards a sustainable “data revolution.”
  • The solutions focused on this recent report from the Overseas Development Institute focus on capacity-building activities of national statistical offices (NSOs), alternative sources of data (including shared corporate data) to address gaps, and building strong data management systems.

Taylor, L., & Schroeder, R. “Is bigger better? The emergence of big data as a tool for international development policy.” GeoJournal, 80(4). 2015. 503-518. http://bit.ly/1RZgSy4.

  • This journal article describes how privately held data – namely “digital traces” of consumer activity – “are becoming seen by policymakers and researchers as a potential solution to the lack of reliable statistical data on lower-income countries.
  • They focus especially on three categories of data collaborative use cases:
    • Mobile data as a predictive tool for issues such as human mobility and economic activity;
    • Use of mobile data to inform humanitarian response to crises; and
    • Use of born-digital web data as a tool for predicting economic trends, and the implications these have for LMICs.
  • They note, however, that a number of challenges and drawbacks exist for these types of use cases, including:
    • Access to private data sources often must be negotiated or bought, “which potentially means substituting negotiations with corporations for those with national statistical offices;”
    • The meaning of such data is not always simple or stable, and local knowledge is needed to understand how people are using the technologies in question
    • Bias in proprietary data can be hard to understand and quantify;
    • Lack of privacy frameworks; and
    • Power asymmetries, wherein “LMIC citizens are unwittingly placed in a panopticon staffed by international researchers, with no way out and no legal recourse.”

van Panhuis, Willem G., Proma Paul, Claudia Emerson, John Grefenstette, Richard Wilder, Abraham J. Herbst, David Heymann, and Donald S. Burke. “A systematic review of barriers to data sharing in public health.” BMC public health 14, no. 1 (2014): 1144. Available from: http://bit.ly/1JOBruO

  • The authors of this report provide a “systematic literature of potential barriers to public health data sharing.” These twenty potential barriers are classified in six categories: “technical, motivational, economic, political, legal and ethical.” In this taxonomy, “the first three categories are deeply rooted in well-known challenges of health information systems for which structural solutions have yet to be found; the last three have solutions that lie in an international dialogue aimed at generating consensus on policies and instruments for data sharing.”
  • The authors suggest the need for a “systematic framework of barriers to data sharing in public health” in order to accelerate access and use of data for public good.

Verhulst, Stefaan and Sangokoya, David. “Mapping the Next Frontier of Open Data: Corporate Data Sharing.” In: Gasser, Urs and Zittrain, Jonathan and Faris, Robert and Heacock Jones, Rebekah, “Internet Monitor 2014: Reflections on the Digital World: Platforms, Policy, Privacy, and Public Discourse (December 15, 2014).” Berkman Center Research Publication No. 2014-17. http://bit.ly/1GC12a2

  • This essay describe a taxonomy of current corporate data sharing practices for public good: research partnerships; prizes and challenges; trusted intermediaries; application programming interfaces (APIs); intelligence products; and corporate data cooperatives or pooling.
  • Examples of data collaboratives include: Yelp Dataset Challenge, the Digital Ecologies Research Partnerhsip, BBVA Innova Challenge, Telecom Italia’s Big Data Challenge, NIH’s Accelerating Medicines Partnership and the White House’s Climate Data Partnerships.
  • The authors highlight important questions to consider towards a more comprehensive mapping of these activities.

Verhulst, Stefaan and Sangokoya, David, 2015. “Data Collaboratives: Exchanging Data to Improve People’s Lives.” Medium. Available from: http://bit.ly/1JOBDdy

  • The essay refers to data collaboratives as a new form of collaboration involving participants from different sectors exchanging data to help solve public problems. These forms of collaborations can improve people’s lives through data-driven decision-making; information exchange and coordination; and shared standards and frameworks for multi-actor, multi-sector participation.
  • The essay cites four activities that are critical to accelerating data collaboratives: documenting value and measuring impact; matching public demand and corporate supply of data in a trusted way; training and convening data providers and users; experimenting and scaling existing initiatives.
  • Examples of data collaboratives include NIH’s Precision Medicine Initiative; the Mobile Data, Environmental Extremes and Population (MDEEP) Project; and Twitter-MIT’s Laboratory for Social Machines.

Verhulst, Stefaan, Susha, Iryna, Kostura, Alexander. “Data Collaboratives: matching Supply of (Corporate) Data to Solve Public Problems.” Medium. February 24, 2016. http://bit.ly/1ZEp2Sr.

  • This piece articulates a set of key lessons learned during a session at the International Data Responsibility Conference focused on identifying emerging practices, opportunities and challenges confronting data collaboratives.
  • The authors list a number of privately held data sources that could create positive public impacts if made more accessible in a collaborative manner, including:
    • Data for early warning systems to help mitigate the effects of natural disasters;
    • Data to help understand human behavior as it relates to nutrition and livelihoods in developing countries;
    • Data to monitor compliance with weapons treaties;
    • Data to more accurately measure progress related to the UN Sustainable Development Goals.
  • To the end of identifying and expanding on emerging practice in the space, the authors describe a number of current data collaborative experiments, including:
    • Trusted Intermediaries: Statistics Netherlands partnered with Vodafone to analyze mobile call data records in order to better understand mobility patterns and inform urban planning.
    • Prizes and Challenges: Orange Telecom, which has been a leader in this type of Data Collaboration, provided several examples of the company’s initiatives, such as the use of call data records to track the spread of malaria as well as their experience with Challenge 4 Development.
    • Research partnerships: The Data for Climate Action project is an ongoing large-scale initiative incentivizing companies to share their data to help researchers answer particular scientific questions related to climate change and adaptation.
    • Sharing intelligence products: JPMorgan Chase shares macro economic insights they gained leveraging their data through the newly established JPMorgan Chase Institute.
  • In order to capitalize on the opportunities provided by data collaboratives, a number of needs were identified:
    • A responsible data framework;
    • Increased insight into different business models that may facilitate the sharing of data;
    • Capacity to tap into the potential value of data;
    • Transparent stock of available data supply; and
    • Mapping emerging practices and models of sharing.

Vogel, N., Theisen, C., Leidig, J. P., Scripps, J., Graham, D. H., & Wolffe, G. “Mining mobile datasets to enable the fine-grained stochastic simulation of Ebola diffusion.” Paper presented at the Procedia Computer Science. 2015. http://bit.ly/1TZDroF.

  • The paper presents a research study conducted on the basis of the mobile calls records shared with researchers in the framework of the Data for Development Challenge by the mobile operator Orange.
  • The study discusses the data analysis approach in relation to developing a situation of Ebola diffusion built around “the interactions of multi-scale models, including viral loads (at the cellular level), disease progression (at the individual person level), disease propagation (at the workplace and family level), societal changes in migration and travel movements (at the population level), and mitigating interventions (at the abstract government policy level).”
  • The authors argue that the use of their population, mobility, and simulation models provide more accurate simulation details in comparison to high-level analytical predictions and that the D4D mobile datasets provide high-resolution information useful for modeling developing regions and hard to reach locations.

Welle Donker, F., van Loenen, B., & Bregt, A. K. “Open Data and Beyond.” ISPRS International Journal of Geo-Information, 5(4). 2016. http://bit.ly/22YtugY.

  • This research has developed a monitoring framework to assess the effects of open (private) data using a case study of a Dutch energy network administrator Liander.
  • Focusing on the potential impacts of open private energy data – beyond ‘smart disclosure’ where citizens are given information only about their own energy usage – the authors identify three attainable strategic goals:
    • Continuously optimize performance on services, security of supply, and costs;
    • Improve management of energy flows and insight into energy consumption;
    • Help customers save energy and switch over to renewable energy sources.
  • The authors propose a seven-step framework for assessing the impacts of Liander data, in particular, and open private data more generally:
    • Develop a performance framework to describe what the program is about, description of the organization’s mission and strategic goals;
    • Identify the most important elements, or key performance areas which are most critical to understanding and assessing your program’s success;
    • Select the most appropriate performance measures;
    • Determine the gaps between what information you need and what is available;
    • Develop and implement a measurement strategy to address the gaps;
    • Develop a performance report which highlights what you have accomplished and what you have learned;
    • Learn from your experiences and refine your approach as required.
  • While the authors note that the true impacts of this open private data will likely not come into view in the short term, they argue that, “Liander has successfully demonstrated that private energy companies can release open data, and has successfully championed the other Dutch network administrators to follow suit.”

World Economic Forum, 2015. “Data-driven development: pathways for progress.” Geneva: World Economic Forum. http://bit.ly/1JOBS8u

  • This report captures an overview of the existing data deficit and the value and impact of big data for sustainable development.
  • The authors of the report focus on four main priorities towards a sustainable data revolution: commercial incentives and trusted agreements with public- and private-sector actors; the development of shared policy frameworks, legal protections and impact assessments; capacity building activities at the institutional, community, local and individual level; and lastly, recognizing individuals as both produces and consumers of data.

The trouble with Big Data? It is called the “recency bias”.


One of the problems with such a rate of information increase is that the present moment will always loom far larger than even the recent past. Imagine looking back over a photo album representing the first 18 years of your life, from birth to adulthood. Let’s say that you have two photos for your first two years. Assuming a rate of information increase matching that of the world’s data, you will have an impressive 2,000 photos representing the years six to eight; 200,000 for the years 10 to 12; and a staggering 200,000,000 for the years 16 to 18. That’s more than three photographs for every single second of those final two years.

The moment you start looking backwards to seek the longer view, you have far too much of the recent stuff and far too little of the old

This isn’t a perfect analogy with global data, of course. For a start, much of the world’s data increase is due to more sources of information being created by more people, along with far larger and more detailed formats. But the point about proportionality stands. If you were to look back over a record like the one above, or try to analyse it, the more distant past would shrivel into meaningless insignificance. How could it not, with so many times less information available?

Here’s the problem with much of the big data currently being gathered and analysed. The moment you start looking backwards to seek the longer view, you have far too much of the recent stuff and far too little of the old. Short-sightedness is built into the structure, in the form of an overwhelming tendency to over-estimate short-term trends at the expense of history.

To understand why this matters, consider the findings from social science about ‘recency bias’, which describes the tendency to assume that future events will closely resemble recent experience. It’s a version of what is also known as the availability heuristic: the tendency to base your thinking disproportionately on whatever comes most easily to mind. It’s also a universal psychological attribute. If the last few years have seen exceptionally cold summers where you live, for example, you might be tempted to state that summers are getting colder – or that your local climate may be cooling. In fact, you shouldn’t read anything whatsoever into the data. You would need to take a far, far longer view to learn anything meaningful about climate trends. In the short term, you’d be best not speculating at all – but who among us can manage that?

Short-term analyses aren’t only invalid – they’re actively unhelpful and misleading

The same tends to be true of most complex phenomena in real life: stock markets, economies, the success or failure of companies, war and peace, relationships, the rise and fall of empires. Short-term analyses aren’t only invalid – they’re actively unhelpful and misleading. Just look at the legions of economists who lined up to pronounce events like the 2009 financial crisis unthinkable right until it happened. The very notion that valid predictions could be made on that kind of scale was itself part of the problem.

It’s also worth remembering that novelty tends to be a dominant consideration when deciding what data to keep or delete. Out with the old and in with the new: that’s the digital trend in a world where search algorithms are intrinsically biased towards freshness, and where so-called link rot infests everything from Supreme Court decisions to entire social media services. A bias towards the present is structurally engrained in almost all the technology surrounding us, not least thanks to our habit of ditching most of our once-shiny machines after about five years.

What to do? This isn’t just a question of being better at preserving old data – although this wouldn’t be a bad idea, given just how little is currently able to last decades rather than years. More importantly, it’s about determining what is worth preserving in the first place – and what it means meaningfully to cull information in the name of knowledge.

What’s needed is something that I like to think of as “intelligent forgetting”: teaching our tools to become better at letting go of the immediate past in order to keep its larger continuities in view. It’s an act of curation akin to organising a photograph album – albeit with more maths….(More)

Fan Favorites


Erin Reilly at Strategy + Business: “…In theory, new technological advances such as big data and machine learning, combined with more direct access to audience sentiment, behaviors, and preferences via social media and over-the-top delivery channels, give the entertainment and media industry unprecedented insight into what the audience actually wants. But as a professional in the television industry put it, “We’re drowning in data and starving for insights.” Just as my data trail didn’t trace an accurate picture of my true interest in soccer, no data set can quantify all that consumers are as humans. At USC’s Annenberg Innovation Lab, our research has led us to an approach that blends data collection with a deep understanding of the social and cultural context in which the data is created. This can be a powerful practice for helping researchers understand the behavior of fans — fans of sports, brands, celebrities, and shows.

A Model for Understanding Fans

Marketers and creatives often see audiences and customers as passive assemblies of listeners or spectators. But we believe it’s more useful to view them as active participants. The best analogy may be fans. Broadly characterized, fans have a continued connection with the property they are passionate about. Some are willing to declare their affinity through engagement, some have an eagerness to learn more about their passion, and some want to connect with others who share their interests. Fans are emotionally linked to the object of their passion, and experience their passion through their own subjective lenses. We all start out as audience members. But sometimes, when the combination of factors aligns in just the right way, we become engaged as fans.

For businesses, the key to building this engagement and solidifying the relationship is understanding the different types of fan motivations in different contexts, and learning how to turn the data gathered about them into actionable insights. Even if Jane Smith and her best friend are fans of the same show, the same team, or the same brand, they’re likely passionate for different reasons. For example, some viewers may watch the ABC melodrama Scandal because they’re fashionistas and can’t wait to see the newest wardrobe of star Kerry Washington; others may do so because they’re obsessed with politics and want to see how the newly introduced Donald Trump–like character will behave. And those differences mean fans will respond in varied ways to different situations and content.
Though traditional demographics may give us basic information about who fans are and where they’re located, current methods of understanding and measuring engagement are missing the answers to two essential questions: (1) Why is a fan motivated? and (2) What triggers the fan’s behavior? Our Innovation Lab research group is developing a new model called Leveraging Engagement, which can be used as a framework when designing media strategy….(More)”

Big Data Quality: a Roadmap for Open Data


Paper by Paolo Ciancarini, Francesco Poggi and Daniel Russo: “Open Data (OD) is one of the most discussed issue of Big Data which raised the joint interest of public institutions, citizens and private companies since 2009. In addition to transparency in public administrations, another key objective of these initiatives is to allow the development of innovative services for solving real world problems, creating value in some positive and constructive way. However, the massive amount of freely available data has not yet brought the expected effects: as of today, there is no application that has exploited the potential provided by large and distributed information sources in a non-trivial way, nor any service has substantially changed for the better the lives of people. The era of a new generation applications based on open data is far to come. In this context, we observe that OD quality is one of the major threats to achieving the goals of the OD movement. The starting point of this study is the quality of the OD released by the five Constitutional offices of Italy. W3C standards about OD are widely known accepted in Italy by the Italian Digital Agency (AgID). According to the most recent Italian Laws the Public Administration may release OD according to the AgID standards. Our exploratory study aims to assess the quality of such releases and the real implementations of OD. The outcome suggests the need of a drastic improvement in OD quality. Finally we highlight some key quality principles for OD, and propose a roadmap for further research….(more)”

Soon Your City Will Know Everything About You


Currently, the biggest users of these sensor arrays are in cities, where city governments use them to collect large amounts of policy-relevant data. In Los Angeles, the crowdsourced traffic and navigation app Waze collects data that helps residents navigate the city’s choked highway networks. In Chicago, an ambitious program makes public data available to startups eager to build apps for residents. The city’s 49th ward has been experimenting with participatory budgeting and online votingto take the pulse of the community on policy issues. Chicago has also been developing the “Array of Things,” a network of sensors that track, among other things, the urban conditions that affect bronchitis.

Edmonton uses the cloud to track the condition of playground equipment. And a growing number of countries have purpose-built smart cities, like South Korea’s high tech utopia city of Songdo, where pervasive sensor networks and ubiquitous computing generate immense amounts of civic data for public services.

The drive for smart cities isn’t restricted to the developed world. Rio de Janeiro coordinates the information flows of 30 different city agencies. In Beijing and Da Nang (Vietnam), mobile phone data is actively tracked in the name of real-time traffic management. Urban sensor networks, in other words, are also developing in countries with few legal protections governing the usage of data.

These services are promising and useful. But you don’t have to look far to see why the Internet of Things has serious privacy implications. Public data is used for “predictive policing” in at least 75 cities across the U.S., including New York City, where critics maintain that using social media or traffic data to help officers evaluate probable cause is a form of digital stop-and-frisk. In Los Angeles, the security firm Palantir scoops up publicly generated data on car movements, merges it with license plate information collected by the city’s traffic cameras, and sells analytics back to the city so that police officers can decide whether or not to search a car. In Chicago, concern is growing about discriminatory profiling because so much information is collected and managed by the police department — an agency with a poor reputation for handling data in consistent and sensitive ways. In 2015, video surveillance of the police shooting Laquan McDonald outside a Burger King was erased by a police employee who ironically did not know his activities were being digitally recorded by cameras inside the restaurant.

Since most national governments have bungled privacy policy, cities — which have a reputation for being better with administrative innovations — will need to fill this gap. A few countries, such as Canada and the U.K., have independent “privacy commissioners” who are responsible for advocating for the public when bureaucracies must decide how to use or give out data. It is pretty clear that cities need such advocates too.

What would Urban Privacy Commissioners do? They would teach the public — and other government staff — about how policy algorithms work. They would evaluate the political context in which city agencies make big data investments. They would help a city negotiate contracts that protect residents’ privacy while providing effective analysis to policy makers and ensuring that open data is consistently serving the public good….(more)”.

Combatting Police Discrimination in the Age of Big Data


Paper by Sharad Goel, Maya Perelman, Ravi Shroff and David Alan Sklansky: “The exponential growth of available information about routine police activities offers new opportunities to improve the fairness and effectiveness of police practices. We illustrate the point by showing how a particular kind of calculation made possible by modern, large-scale datasets — determining the likelihood that stopping and frisking a particular pedestrian will result in the discovery of contraband or other evidence of criminal activity — could be used to reduce the racially disparate impact of pedestrian searches and to increase their effectiveness. For tools of this kind to achieve their full potential in improving policing, though, the legal system will need to adapt. One important change would be to understand police tactics such as investigatory stops of pedestrians or motorists as programs, not as isolated occurrences. Beyond that, the judiciary will need to grow more comfortable with statistical proof of discriminatory policing, and the police will need to be more receptive to the assistance that algorithms can provide in reducing bias….(More)”

Big data: Issues for an international political sociology of the datafication of worlds


Paper by Madsen, A.K.; Flyverbom, M.; Hilbert, M. and Ruppert, Evelyn: “The claim that big data can revolutionize strategy and governance in the context of international relations is increasingly hard to ignore. Scholars of international political sociology have mainly discussed this development through the themes of security and surveillance. The aim of this paper is to outline a research agenda that can be used to raise a broader set of sociological and practice-oriented questions about the increasing datafication of international relations and politics. First, it proposes a way of conceptualizing big data that is broad enough to open fruitful investigations into the emerging use of big data in these contexts. This conceptualization includes the identification of three moments contained in any big data practice. Secondly, it suggests a research agenda built around a set of sub-themes that each deserve dedicated scrutiny when studying the interplay between big data and international relations along these moments. Through a combination of these moments and sub-themes, the paper suggests a roadmap for an international political sociology of the datafication of worlds….(more)”

Real-Time Data Can Improve Traffic Management in Major Cities


World Bank: “Traffic management agencies and city planners will soon have access to real-time data to better manage traffic flows on the streets of Cebu City and Metro Manila.

Grab, The World Bank, and the Department of Transportation and Communications (DOTC) launched today the OpenTraffic initiative, which will help address traffic congestion and road safety challenges.

Grab is the leading ride-hailing platform in Southeast Asia and operates in 30 cities across six countries – Singapore, Indonesia, Philippines, Malaysia, Thailand, and Vietnam.

Grab and the World Bank have been developing free, open-source tools that translate Grab’s voluminous driver GPS data into traffic statistics, including speeds, flows, and intersection delays. These statistics power big data open source tools such as OpenTraffic, for analysing traffic speeds and flows, and DRIVER, for identifying road incident blackspots and improving emergency response. Grab and the World Bank plan to make OpenTraffic available to other Southeast Asian city governments in the near future.

“Using big data is one of the potential solutions to the challenges faced by our transport systems. Through this we can provide accurate, real-time information for initiatives that can help alleviate traffic congestion and improve road safety,” said DOTC Secretary Joseph Emilio A. Abaya.

Last month, the World Bank and DOTC helped train more than 200 government staff from the agency, the Philippine National Police (PNP), the Metro Manila Development Authority (MMDA), the Department of Public Works and Highways (DPWH), and the Cebu City Transportation Office on the use of the OpenTraffic platform….In the near future, traffic statistics derived through OpenTraffic will be fed into another application called “DRIVER” or Data for Road Incident Visualization, Evaluation, and Reporting for road incident recording and analysis. This application, developed by the World Bank, will help engineering units to prioritize crash-prone areas for interventions and improve emergency response….(More)”