How Should Scientists’ Access To Health Databanks Be Managed?


Richard Harris at NPR: “More than a million Americans have donated genetic information and medical data for research projects. But how that information gets used varies a lot, depending on the philosophy of the organizations that have gathered the data.

Some hold the data close, while others are working to make the data as widely available to as many researchers as possible — figuring science will progress faster that way. But scientific openness can be constrained b y both practical and commercial considerations.

Three major projects in the United States illustrate these differing philosophies.

VA scientists spearhead research on veterans database

The first project involves three-quarters of a million veterans, mostly men over age 60. Every day, 400 to 500 blood samples show up in a modern lab in the basement of the Veterans Affairs hospital in Boston. Luis Selva, the center’s associate director, explains that robots extract DNA from the samples and then the genetic material is sent out for analysis….

Intermountain Healthcare teams with deCODE genetics

Our second example involves what is largely an extended family: descendants of settlers in Utah, primarily from the Church of Jesus Christ of Latter-day Saints. This year, Intermountain Healthcare in Utah announced that it was going to sequence the complete DNA of half a million of its patients, resulting in what the health system says will be the world’s largest collection of complete genomes….

NIH’s All of Us aims to diversify and democratize research

Our third and final example is an effort by the National Institutes of Health to recruit a million Americans for a long-term study of health, behavior and genetics. Its philosophy sharply contrasts with that of Intermountain Health.

“We do have a very strong goal around diversity, in making sure that the participants in the All of Us research program reflect the vast diversity of the United States,” says Stephanie Devaney, the program’s deputy director….(More)”.

Raw data won’t solve our problems — asking the right questions will


Stefaan G. Verhulst in apolitical: “If I had only one hour to save the world, I would spend fifty-five minutes defining the questions, and only five minutes finding the answers,” is a famous aphorism attributed to Albert Einstein.

Behind this quote is an important insight about human nature: Too often, we leap to answers without first pausing to examine our questions. We tout solutions without considering whether we are addressing real or relevant challenges or priorities. We advocate fixes for problems, or for aspects of society, that may not be broken at all.

This misordering of priorities is especially acute — and represents a missed opportunity — in our era of big data. Today’s data has enormous potential to solve important public challenges.

However, policymakers often fail to invest in defining the questions that matter, focusing mainly on the supply side of the data equation (“What data do we have or must have access to?”) rather than the demand side (“What is the core question and what data do we really need to answer it?” or “What data can or should we actually use to solve those problems that matter?”).

As such, data initiatives often provide marginal insights while at the same time generating unnecessary privacy risks by accessing and exploring data that may not in fact be needed at all in order to address the root of our most important societal problems.

A new science of questions

So what are the truly vexing questions that deserve attention and investment today? Toward what end should we strategically seek to leverage data and AI?

The truth is that policymakers and other stakeholders currently don’t have a good way of defining questions or identifying priorities, nor a clear framework to help us leverage the potential of data and data science toward the public good.

This is a situation we seek to remedy at The GovLab, an action research center based at New York University.

Our most recent project, the 100 Questions Initiative, seeks to begin developing a new science and practice of questions — one that identifies the most urgent questions in a participatory manner. Launched last month, the goal of this project is to develop a process that takes advantage of distributed and diverse expertise on a range of given topics or domains so as to identify and prioritize those questions that are high impact, novel and feasible.

Because we live in an age of data and much of our work focuses on the promises and perils of data, we seek to identify the 100 most pressing problems confronting the world that could be addressed by greater use of existing, often inaccessible, datasets through data collaboratives – new forms of cross-disciplinary collaboration beyond public-private partnerships focused on leveraging data for good….(More)”.

How Tulsa is Preserving Privacy and Sharing Data for Social Good


Data across Sectors for Health: “Data sharing between organizations addressing social risk factors has the potential to amplify impact by increasing direct service capacity and efficiency. Unfortunately, the risks of and restrictions on sharing personal data often limit this potential, and adherence to regulations such as HIPAA and FERPA can make data sharing a significant challenge.

DASH CIC-START awardee Restore Hope Ministries worked with Asemio to utilize technology that allows for the analysis of personally identifiable information while preserving clients’ privacy. The collaboration shared their findings in a new white paper that describes the process of using multi-party computation technology to answer questions that can aid service providers in exploring the barriers that underserved populations may be facing. The first question they asked: what is the overlap of populations served by two distinct organizations? The results of the overlap analysis confirmed that a significant opportunity exists to increase access to services for a subset of individuals through better outreach…(More)”

Sharing Private Data for Public Good


Stefaan G. Verhulst at Project Syndicate: “After Hurricane Katrina struck New Orleans in 2005, the direct-mail marketing company Valassis shared its database with emergency agencies and volunteers to help improve aid delivery. In Santiago, Chile, analysts from Universidad del Desarrollo, ISI Foundation, UNICEF, and the GovLab collaborated with Telefónica, the city’s largest mobile operator, to study gender-based mobility patterns in order to design a more equitable transportation policy. And as part of the Yale University Open Data Access project, health-care companies Johnson & Johnson, Medtronic, and SI-BONE give researchers access to previously walled-off data from 333 clinical trials, opening the door to possible new innovations in medicine.

These are just three examples of “data collaboratives,” an emerging form of partnership in which participants exchange data for the public good. Such tie-ups typically involve public bodies using data from corporations and other private-sector entities to benefit society. But data collaboratives can help companies, too – pharmaceutical firms share data on biomarkers to accelerate their own drug-research efforts, for example. Data-sharing initiatives also have huge potential to improve artificial intelligence (AI). But they must be designed responsibly and take data-privacy concerns into account.

Understanding the societal and business case for data collaboratives, as well as the forms they can take, is critical to gaining a deeper appreciation the potential and limitations of such ventures. The GovLab has identified over 150 data collaboratives spanning continents and sectors; they include companies such as Air FranceZillow, and Facebook. Our research suggests that such partnerships can create value in three main ways….(More)”.

How does Finland use health and social data for the public benefit?


Karolina Mackiewicz at ICT & Health: “…Better innovation opportunities, quicker access to comprehensive ready-combined data, smoother permit procedures needed for research – those are some of the benefits for society, academia or business announced by the Ministry of Social Affairs and Health of Finland when the Act on the Secondary Use of Health and Social Data was introduced.

It came into force on 1st of May 2019. According to the Finnish Innovation Fund SITRA, which was involved in the development of the legislation and carried out the pilot projects, it’s a ‘groundbreaking’ piece of legislation. It’ not only effectively introduces a one-stop-shop for data but it’s also one of the first, if not the first, implementations of the GDPR (the EU’s General Data Protection Regulation) for the secondary use of data in Europe. 

The aim of the Act is “to facilitate the effective and safe processing and access to the personal social and health data for steering, supervision, research, statistics and development in the health and social sector”. A second objective is to guarantee an individual’s legitimate expectations as well as their rights and freedoms when processing personal data. In other words, the Ministry of Health promises that the Act will help eliminate the administrative burden in access to the data by the researchers and innovative businesses while respecting the privacy of individuals and providing conditions for the ethically sustainable way of using data….(More)”.

How technology can enable a more sustainable agriculture industry


Matt High at CSO:”…The sector also faces considerable pressure in terms of its transparency, largely driven by shifting consumer preferences for responsibly sourced and environmentally-friendly goods. The UK, for example, has seen shoppers transition away from typical agricultural commodities towards ‘free-from’ or alternative options that combine health, sustainability and quality.

It means that farmers worldwide must work harder and smarter in embedding corporate social responsibility (CSR) practices into their operations. Davis, who through Anthesis delivers financially driven sustainability strategies, strongly believes that sustainability is no longer a choice. “The agricultural sector is intrinsic to a wide range of global systems, societies and economies,” he says, adding that those organisations that do not embed sustainability best practice into their supply chains will face “increasing risk of price volatility, security of supply, commodity shortages, fraud and uncertainty.” To counter this, he urges businesses to develop CSR founded on a core set of principles that enable sustainable practices to be successfully adopted at a pace and scale that mitigates those risks discussed.

Data is proving a particularly useful tool in this regard. Take the Cool Farm Tool, for example, which is a global, free-to-access online greenhouse gas (GHG), water and biodiversity footprint calculator used by farmers in more than 115 countries worldwide to enable effective management of critical on-farm sustainability challenges. Member organisations such as Pepsi, Tesco and Danone aggregate their supply chain data to report total agricultural footprint against key sustainability metrics – outputs from which are used to share knowledge and best practice on carbon and water reductions strategies….(More)”.

What can the labor flow of 500 million people on LinkedIn tell us about the structure of the global economy?


Paper by Jaehyuk Park et al: “…One of the most popular concepts for policy makers and business economists to understand the structure of the global economy is “cluster”, the geographical agglomeration of interconnected firms such as Silicon ValleyWall Street, and Hollywood. By studying those well-known clusters, we become to understand the advantage of participating in a geo-industrial cluster for firms and how it is related to the economic growth of a region. 

However, the existing definition of geo-industrial cluster is not systematic enough to reveal the whole picture of the global economy. Often, after defining as a group of firms in a certain area, the geo-industrial clusters are considered as independent to each other. As we should consider the interaction between accounting team and marketing team to understand the organizational structure of a firm, the relationships among those geo-industrial clusters are the essential part of the whole picture….

In this new study, my colleagues and I at Indiana University — with support from LinkedIn — have finally overcome these limitations by defining geo-industrial clusters through labor flow and constructing a global labor flow network from LinkedIn’s individual-level job history dataset. Our access to this data was made possible by our selection as one of 11 teams selected to participate in the LinkedIn Economic Graph Challenge.

The transitioning of workers between jobs and firms — also known as labor flow — is considered central in driving firms towards geo-industrial clusters due to knowledge spillover and labor market pooling. In response, we mapped the cluster structure of the world economy based on labor mobility between firms during the last 25 years, constructing a “labor flow network.” 

To do this, we leverage LinkedIn’s data on professional demographics and employment histories from more than 500 million people between 1990 and 2015. The network, which captures approximately 130 million job transitions between more than 4 million firms, is the first-ever flow network of global labor.

The resulting “map” allows us to:

  • identify geo-industrial clusters systematically and organically using network community detection
  • verify the importance of region and industry in labor mobility
  • compare the relative importance between the two constraints in different hierarchical levels, and
  • reveal the practical advantage of the geo-industrial cluster as a unit of future economic analyses.
  • show a better picture of what industry in what region leads the economic growth of the industry or the region, at the same time
  • find out emerging and declining skills based on the representativeness of them in growing and declining geo-industrial clusters…(More)”.

The value of data in Canada: Experimental estimates


Statistics Canada: “As data and information take on a far more prominent role in Canada and, indeed, all over the world, data, databases and data science have become a staple of modern life. When the electricity goes out, Canadians are as much in search of their data feed as they are food and heat. Consumers are using more and more data that is embodied in the products they buy, whether those products are music, reading material, cars and other appliances, or a wide range of other goods and services. Manufacturers, merchants and other businesses depend increasingly on the collection, processing and analysis of data to make their production processes more efficient and to drive their marketing strategies.

The increasing use of and investment in all things data is driving economic growth, changing the employment landscape and reshaping how and from where we buy and sell goods. Yet the rapid rise in the use and importance of data is not well measured in the existing statistical system. Given the ‘lack of data on data’, Statistics Canada has initiated new research to produce a first set of estimates of the value of data, databases and data science. The development of these estimates benefited from collaboration with the Bureau of Economic Analysis in the United States and the Organisation for Economic Co-operation and Development.

In 2018, Canadian investment in data, databases and data science was estimated to be as high as $40 billion. This was greater than the annual investment in industrial machinery, transportation equipment, and research and development and represented approximately 12% of total non-residential investment in 2018….

Statistics Canada recently released a conceptual framework outlining how one might measure the economic value of data, databases and data science. Thanks to this new framework, the growing role of data in Canada can be measured through time. This framework is described in a paper that was released in The Daily on June 24, 2019 entitled “Measuring investments in data, databases and data science: Conceptual framework.” That paper describes the concept of an ‘information chain’ in which data are derived from everyday observations, databases are constructed from data, and data science creates new knowledge by analyzing the contents of databases….(More)”.

How we can place a value on health care data


Report by E&Y: “Unlocking the power of health care data to fuel innovation in medical research and improve patient care is at the heart of today’s health care revolution. When curated or consolidated into a single longitudinal dataset, patient-level records will trace a complete story of a patient’s demographics, health, wellness, diagnosis, treatments, medical procedures and outcomes. Health care providers need to recognize patient data for what it is: a valuable intangible asset desired by multiple stakeholders, a treasure trove of information.

Among the universe of providers holding significant data assets, the United Kingdom’s National Health Service (NHS) is the single largest integrated health care provider in the world. Its patient records cover the entire UK population from birth to death.

We estimate that the 55 million patient records held by the NHS today may have an indicative market value of several billion pounds to a commercial organization. We estimate also that the value of the curated NHS dataset could be as much as £5bn per annum and deliver around £4.6bn of benefit to patients per annum, in potential operational savings for the NHS, enhanced patient outcomes and generation of wider economic benefits to the UK….(More)”.

The plan to mine the world’s research papers


Priyanka Pulla in Nature: “Carl Malamud is on a crusade to liberate information locked up behind paywalls — and his campaigns have scored many victories. He has spent decades publishing copyrighted legal documents, from building codes to court records, and then arguing that such texts represent public-domain law that ought to be available to any citizen online. Sometimes, he has won those arguments in court. Now, the 60-year-old American technologist is turning his sights on a new objective: freeing paywalled scientific literature. And he thinks he has a legal way to do it.

Over the past year, Malamud has — without asking publishers — teamed up with Indian researchers to build a gigantic store of text and images extracted from 73 million journal articles dating from 1847 up to the present day. The cache, which is still being created, will be kept on a 576-terabyte storage facility at Jawaharlal Nehru University (JNU) in New Delhi. “This is not every journal article ever written, but it’s a lot,” Malamud says. It’s comparable to the size of the core collection in the Web of Science database, for instance. Malamud and his JNU collaborator, bioinformatician Andrew Lynn, call their facility the JNU data depot.

No one will be allowed to read or download work from the repository, because that would breach publishers’ copyright. Instead, Malamud envisages, researchers could crawl over its text and data with computer software, scanning through the world’s scientific literature to pull out insights without actually reading the text.

The unprecedented project is generating much excitement because it could, for the first time, open up vast swathes of the paywalled literature for easy computerized analysis. Dozens of research groups already mine papers to build databases of genes and chemicals, map associations between proteins and diseases, and generate useful scientific hypotheses. But publishers control — and often limit — the speed and scope of such projects, which typically confine themselves to abstracts, not full text. Researchers in India, the United States and the United Kingdom are already making plans to use the JNU store instead. Malamud and Lynn have held workshops at Indian government laboratories and universities to explain the idea. “We bring in professors and explain what we are doing. They get all excited and they say, ‘Oh gosh, this is wonderful’,” says Malamud.

But the depot’s legal status isn’t yet clear. Malamud, who contacted several intellectual-property (IP) lawyers before starting work on the depot, hopes to avoid a lawsuit. “Our position is that what we are doing is perfectly legal,” he says. For the moment, he is proceeding with caution: the JNU data depot is air-gapped, meaning that no one can access it from the Internet. Users have to physically visit the facility, and only researchers who want to mine for non-commercial purposes are currently allowed in. Malamud says his team does plan to allow remote access in the future. “The hope is to do this slowly and deliberately. We are not throwing this open right away,” he says….(More)”.