Digital Footprints: Opportunities and Challenges for Online Social Research


Paper by Golder, Scott A. and Macy, Michael for the Annual Review of Sociology: “Online interaction is now a regular part of daily life for a demographically diverse population of hundreds of millions of people worldwide. These interactions generate fine-grained time-stamped records of human behavior and social interaction at the level of individual events, yet are global in scale, allowing researchers to address fundamental questions about social identity, status, conflict, cooperation, collective action, and diffusion, both by using observational data and by conducting in vivo field experiments. This unprecedented opportunity comes with a number of methodological challenges, including generalizing observations to the offline world, protecting individual privacy, and solving the logistical challenges posed by “big data” and web-based experiments. We review current advances in online social research and critically assess the theoretical and methodological opportunities and limitations. [J]ust as the invention of the telescope revolutionized the study of the heavens, so too by rendering the unmeasurable measurable, the technological revolution in mobile, Web, and Internet communications has the potential to revolutionize our understanding of ourselves and how we interact…. [T]hree hundred years after Alexander Pope argued that the proper study of mankind should lie not in the heavens but in ourselves, we have finally found our telescope. Let the revolution begin. —Duncan Watts”

Fifteen open data insights


Tim Davies from ODRN: “…below are the 15 points from the three-page briefing version, and you can find a full write-up of these points for download. You can also find reports from all the individual project partners, including a collection of quick-read research posters over on the Open Data Research Network website.

15 insights into open data supply, use and impacts

(1) There are many gaps to overcome before open data availability, can lead to widespread effective use and impact. Open data can lead to change through a ‘domino effect’, or by creating ripples of change that gradually spread out. However, often many of the key ‘domino pieces’ are missing, and local political contexts limit the reach of ripples. Poor data quality, low connectivity, scarce technical skills, weak legal frameworks and political barriers may all prevent open data triggering sustainable change. Attentiveness to all the components of open data impact is needed when designing interventions.
(2) There is a frequent mismatch between open data supply and demand in developing countries. Counting datasets is a poor way of assessing the quality of an open data initiative. The datasets published on portals are often the datasets that are easiest to publish, not the datasets most in demand. Politically sensitive datasets are particularly unlikely to be published without civil society pressure. Sometimes the gap is on the demand side – as potential open data users often do not articulate demands for key datasets.
(3) Open data initiatives can create new spaces for civil society to pursue government accountability and effectiveness. The conversation around transparency and accountability that ideas of open data can support is as important as the datasets in some developing countries.
(4) Working on open data projects can change how government creates, prepares and uses its own data. The motivations behind an open data initiative shape how government uses the data itself. Civil society and entrepreneurs interacting with government through open data projects can help shape government data practices. This makes it important to consider which intermediaries gain insider roles shaping data supply.
(5) Intermediaries are vital to both the supply and the use of open data. Not all data needed for governance in developing countries comes from government. Intermediaries can create data, articulate demands for data, and help translate open data visions from political leaders into effective implementations. Traditional local intermediaries are an important source of information, in particular because they are trusted parties.
(6) Digital divides create data divides in both the supply and use of data. In some developing countries key data is not digitised, or a lack of technical staff has left data management patchy and inconsistent. Where Internet access is scarce, few citizens can have direct access to data or services built with it. Full access is needed for full empowerment, but offline intermediaries, including journalists and community radio stations, also play a vital role in bridging the gaps between data and citizens.
(7) Where information is already available and used, the shift to open data involves data evolution rather than data revolution. Many NGOs and intermediaries already access the information which is now becoming available as data. Capacity building should start from existing information and data practices in organisations, and should look for the step-by-step gains to be made from a data-driven approach.
(8) Officials’ fears about the integrity of data are a barrier to more machine-readable data being made available. The publication of data as PDF or in scanned copies is often down to a misunderstanding of how open data works. Only copies can be changed, and originals can be kept authoritative. Helping officials understand this may help increase the supply of data.
(9) Very few datasets are clearly openly licensed, and there is low understanding of what open licenses entail. There are mixed opinions on the importance of a focus on licensing in different contexts. Clear licenses are important to building a global commons of interoperable data, but may be less relevant to particular uses of data on the ground. In many countries wider conversation about licensing are yet to take place.
(10) Privacy issues are not on the radar of most developing country open data projects, although commercial confidentiality does arise as a reason preventing greater data transparency. Much state held data is collected either from citizens or from companies. Few countries in the ODDC study have weak or absent privacy laws and frameworks, yet participants in the studies raised few personal privacy considerations. By contrast, a lack of clarity, and officials’ concerns, about potential breaches of commercial confidentiality when sharing data gathered from firms was a barrier to opening data.
(11) There is more to open data than policies and portals. Whilst central open data portals act as a visible symbol of open data initiatives, a focus on portal building can distract attention from wider reforms. Open data elements can also be built on existing data sharing practices, and data made available through the locations where citizens, NGOs are businesses already go to access information.
(12) Open data advocacy should be aware of, and build upon, existing policy foundations in specific countries and sectors. Sectoral transparency policies for local government, budget and energy industry regulation, amongst others, could all have open data requirements and standards attached, drawing on existing mechanisms to secure sustainable supplies of relevant open data in developing countries. In addition, open data conversations could help make existing data collection and disclosure requirements fit better with the information and data demands of citizens.
(13) Open data is not just a central government issue: local government data, city data, and data from the judicial and legislative branches are all important. Many open data projects focus on the national level, and only on the executive branch. However, local government is closer to citizens, urban areas bring together many of the key ingredients for successful open data initiatives, and transparency in other branches of government is important to secure citizens democratic rights.
(14) Flexibility is needed in the application of definitions of open data to allow locally relevant and effective open data debates and advocacy to emerge. Open data is made up of various elements, including proactive publication, machine-readability and permissions to re-use. Countries at different stages of open data development may choose to focus on one or more of these, but recognising that adopting all elements at once could hinder progress. It is important to find ways to both define open data clearly, and to avoid a reductive debate that does not recognise progressive steps towards greater openness.
(15) There are many different models for an open data initiative: including top-down, bottom-up and sector-specific. Initiatives may also be state-led, civil society-led and entrepreneur-led in their goals and how they are implemented – with consequences for the resources and models required to make them sustainable. There is no one-size-fits-all approach to open data. More experimentation, evaluation and shared learning on the components, partners and processes for putting open data ideas into practice must be a priority for all who want to see a world where open-by-default data drives real social, political and economic change.
You can read more about each of these points in the full report.”

Selected Readings on Economic Impact of Open Data


The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of open data was originally published in 2014.

Open data is publicly available data – often released by governments, scientists, and occasionally private companies – that is made available for anyone to use, in a machine-readable format, free of charge. Considerable attention has been devoted to the economic potential of open data for businesses and other organizations, and it is now widely accepted that open data plays an important role in spurring innovation, growth, and job creation. From new business models to innovation in local governance, open data is being quickly adopted as a valuable resource at many levels.

Measuring and analyzing the economic impact of open data in a systematic way is challenging, and governments as well as other providers of open data seek to provide access to the data in a standardized way. As governmental transparency increases and open data changes business models and activities in many economic sectors, it is important to understand best practices for releasing and using non-proprietary, public information. Costs, social challenges, and technical barriers also influence the economic impact of open data.

These selected readings are intended as a first step in the direction of answering the question of if we can and how we consider if opening data spurs economic impact.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)

Bonina, Carla. New Business Models and the Values of Open Data: Definitions, Challenges, and Opportunities. NEMODE 3K – Small Grants Call 2013. http://bit.ly/1xGf9oe

  • In this paper, Dr. Carla Bonina provides an introduction to open data and open data business models, evaluating their potential economic value and identifying future challenges for the effectiveness of open data, such as personal data and privacy, the emerging data divide, and the costs of collecting, producing and releasing open (government) data.

Carpenter, John and Phil Watts. Assessing the Value of OS OpenData™ to the Economy of Great Britain – Synopsis. June 2013. Accessed July 25, 2014. http://bit.ly/1rTLVUE

  • John Carpenter and Phil Watts of Ordnance Survey undertook a study to examine the economic impact of open data to the economy of Great Britain. Using a variety of methods such as case studies, interviews, downlad analysis, adoption rates, impact calculation, and CGE modeling, the authors estimates that the OS OpenData initiative will deliver a net of increase in GDP of £13 – 28.5 million for Great Britain in 2013.

Capgemini Consulting. The Open Data Economy: Unlocking Economic Value by Opening Government and Public Data. Capgemini Consulting. Accessed July 24, 2014. http://bit.ly/1n7MR02

  • This report explores how governments are leveraging open data for economic benefits. Through using a compariative approach, the authors study important open data from organizational, technological, social and political perspectives. The study highlights the potential of open data to drive profit through increasing the effectiveness of benchmarking and other data-driven business strategies.

Deloitte. Open Growth: Stimulating Demand for Open Data in the UK. Deloitte Analytics. December 2012. Accessed July 24, 2014. http://bit.ly/1oeFhks

  • This early paper on open data by Deloitte uses case studies and statistical analysis on open government data to create models of businesses using open data. They also review the market supply and demand of open government data in emerging sectors of the economy.

Gruen, Nicholas, John Houghton and Richard Tooth. Open for Business: How Open Data Can Help Achieve the G20 Growth Target.  Accessed July 24, 2014, http://bit.ly/UOmBRe

  • This report highlights the potential economic value of the open data agenda in Australia and the G20. The report provides an initial literature review on the economic value of open data, as well as a asset of case studies on the economic value of open data, and a set of recommendations for how open data can help the G20 and Australia achieve target objectives in the areas of trade, finance, fiscal and monetary policy, anti-corruption, employment, energy, and infrastructure.

Heusser, Felipe I. Understanding Open Government Data and Addressing Its Impact (draft version). World Wide Web Foundation. http://bit.ly/1o9Egym

  • The World Wide Web Foundation, in collaboration with IDRC has begun a research network to explore the impacts of open data in developing countries. In addition to the Web Foundation and IDRC, the network includes the Berkman Center for Internet and Society at Harvard, the Open Development Technology Alliance and Practical Participation.

Howard, Alex. San Francisco Looks to Tap Into the Open Data Economy. O’Reilly Radar: Insight, Analysis, and Reach about Emerging Technologies.  October 19, 2012.  Accessed July 24, 2014. http://oreil.ly/1qNRt3h

  • Alex Howard points to San Francisco as one of the first municipalities in the United States to embrace an open data platform.  He outlines how open data has driven innovation in local governance.  Moreover, he discusses the potential impact of open data on job creation and government technology infrastructure in the City and County of San Francisco.

Huijboom, Noor and Tijs Van den Broek. Open Data: An International Comparison of Strategies. European Journal of ePractice. March 2011. Accessed July 24, 2014.  http://bit.ly/1AE24jq

  • This article examines five countries and their open data strategies, identifying key features, main barriers, and drivers of progress for of open data programs. The authors outline the key challenges facing European, and other national open data policies, highlighting the emerging role open data initiatives are playing in political and administrative agendas around the world.

Manyika, J., Michael Chui, Diana Farrell, Steve Van Kuiken, Peter Groves, and Elizabeth Almasi Doshi. Open Data: Unlocking Innovation and Performance with Liquid Innovation. McKinsey Global Institute. October 2013. Accessed July 24, 2014.  http://bit.ly/1lgDX0v

  • This research focuses on quantifying the potential value of open data in seven “domains” in the global economy: education, transportation, consumer products, electricity, oil and gas, health care, and consumer finance.

Moore, Alida. Congressional Transparency Caucus: How Open Data Creates Jobs. April 2, 2014. Accessed July 30, 2014. Socrata. http://bit.ly/1n7OJpp

  • Socrata provides a summary of the March 24th briefing of the Congressional Transparency Caucus on the need to increase government transparency through adopting open data initiatives. They include key takeaways from the panel discussion, as well as their role in making open data available for businesses.

Stott, Andrew. Open Data for Economic Growth. The World Bank. June 25, 2014. Accessed July 24, 2014. http://bit.ly/1n7PRJF

  • In this report, The World Bank examines the evidence for the economic potential of open data, holding that the economic potential is quite large, despite a variation in the published estimates, and difficulties assessing its potential methodologically. They provide five archetypes of businesses using open data, and provides recommendations for governments trying to maximize economic growth from open data.

The Social Laboratory


Shane Harris in Foreign Policy: “…, Singapore has become a laboratory not only for testing how mass surveillance and big-data analysis might prevent terrorism, but for determining whether technology can be used to engineer a more harmonious society….Months after the virus abated, Ho and his colleagues ran a simulation using Poindexter’s TIA ideas to see whether they could have detected the outbreak. Ho will not reveal what forms of information he and his colleagues used — by U.S. standards, Singapore’s privacy laws are virtually nonexistent, and it’s possible that the government collected private communications, financial data, public transportation records, and medical information without any court approval or private consent — but Ho claims that the experiment was very encouraging. It showed that if Singapore had previously installed a big-data analysis system, it could have spotted the signs of a potential outbreak two months before the virus hit the country’s shores. Prior to the SARS outbreak, for example, there were reports of strange, unexplained lung infections in China. Threads of information like that, if woven together, could in theory warn analysts of pending crises.
The RAHS system was operational a year later, and it immediately began “canvassing a range of sources for weak signals of potential future shocks,” one senior Singaporean security official involved in the launch later recalled.
The system uses a mixture of proprietary and commercial technology and is based on a “cognitive model” designed to mimic the human thought process — a key design feature influenced by Poindexter’s TIA system. RAHS, itself, doesn’t think. It’s a tool that helps human beings sift huge stores of data for clues on just about everything. It is designed to analyze information from practically any source — the input is almost incidental — and to create models that can be used to forecast potential events. Those scenarios can then be shared across the Singaporean government and be picked up by whatever ministry or department might find them useful. Using a repository of information called an ideas database, RAHS and its teams of analysts create “narratives” about how various threats or strategic opportunities might play out. The point is not so much to predict the future as to envision a number of potential futures that can tell the government what to watch and when to dig further.
The officials running RAHS today are tight-lipped about exactly what data they monitor, though they acknowledge that a significant portion of “articles” in their databases come from publicly available information, including news reports, blog posts, Facebook updates, and Twitter messages. (“These articles have been trawled in by robots or uploaded manually” by analysts, says one program document.) But RAHS doesn’t need to rely only on open-source material or even the sorts of intelligence that most governments routinely collect: In Singapore, electronic surveillance of residents and visitors is pervasive and widely accepted…”

Request for Proposals: Exploring the Implications of Government Release of Large Datasets


“The Berkeley Center for Law & Technology and Microsoft are issuing this request for proposals (RFP) to fund scholarly inquiry to examine the civil rights, human rights, security and privacy issues that arise from recent initiatives to release large datasets of government information to the public for analysis and reuse.  This research may help ground public policy discussions and drive the development of a framework to avoid potential abuses of this data while encouraging greater engagement and innovation.
This RFP seeks to:

    • Gain knowledge of the impact of the online release of large amounts of data generated by citizens’ interactions with government
    • Imagine new possibilities for technical, legal, and regulatory interventions that avoid abuse
    • Begin building a body of research that addresses these issues

– BACKGROUND –

 
Governments at all levels are releasing large datasets for analysis by anyone for any purpose—“Open Data.”  Using Open Data, entrepreneurs may create new products and services, and citizens may use it to gain insight into the government.  A plethora of time saving and other useful applications have emerged from Open Data feeds, including more accurate traffic information, real-time arrival of public transportation, and information about crimes in neighborhoods.  Sometimes governments release large datasets in order to encourage the development of unimagined new applications.  For instance, New York City has made over 1,100 databases available, some of which contain information that can be linked to individuals, such as a parking violation database containing license plate numbers and car descriptions.
Data held by the government is often implicitly or explicitly about individuals—acting in roles that have recognized constitutional protection, such as lobbyist, signatory to a petition, or donor to a political cause; in roles that require special protection, such as victim of, witness to, or suspect in a crime; in the role as businessperson submitting proprietary information to a regulator or obtaining a business license; and in the role of ordinary citizen.  While open government is often presented as an unqualified good, sometimes Open Data can identify individuals or groups, leading to a more transparent citizenry.  The citizen who foresees this growing transparency may be less willing to engage in government, as these transactions may be documented and released in a dataset to anyone to use for any imaginable purpose—including to deanonymize the database—forever.  Moreover, some groups of citizens may have few options or no choice as to whether to engage in governmental activities.  Hence, open data sets may have a disparate impact on certain groups. The potential impact of large-scale data and analysis on civil rights is an area of growing concern.  A number of civil rights and media justice groups banded together in February 2014 to endorse the “Civil Rights Principles for the Era of Big Data” and the potential of new data systems to undermine longstanding civil rights protections was flagged as a “central finding” of a recent policy review by White House adviser John Podesta.
The Berkeley Center for Law & Technology (BCLT) and Microsoft are issuing this request for proposals in an effort to better understand the implications and potential impact of the release of data related to U.S. citizens’ interactions with their local, state and federal governments. BCLT and Microsoft will fund up to six grants, with a combined total of $300,000.  Grantees will be required to participate in a workshop to present and discuss their research at the Berkeley Technology Law Journal (BTLJ) Spring Symposium.  All grantees’ papers will be published in a dedicated monograph.  Grantees’ papers that approach the issues from a legal perspective may also be published in the BTLJ. We may also hold a followup workshop in New York City or Washington, DC.
While we are primarily interested in funding proposals that address issues related to the policy impacts of Open Data, many of these issues are intertwined with general societal implications of “big data.” As a result, proposals that explore Open Data from a big data perspective are welcome; however, proposals solely focused on big data are not.  We are open to proposals that address the following difficult question.  We are also open to methods and disciplines, and are particularly interested in proposals from cross-disciplinary teams.

    • To what extent does existing Open Data made available by city and state governments affect individual profiling?  Do the effects change depending on the level of aggregation (neighborhood vs. cities)?  What releases of information could foreseeably cause discrimination in the future? Will different groups in society be disproportionately impacted by Open Data?
    • Should the use of Open Data be governed by a code of conduct or subject to a review process before being released? In order to enhance citizen privacy, should governments develop guidelines to release sampled or perturbed data, instead of entire datasets? When datasets contain potentially identifiable information, should there be a notice-and-comment proceeding that includes proposed technological solutions to anonymize, de-identify or otherwise perturb the data?
    • Is there something fundamentally different about government services and the government’s collection of citizen’s data for basic needs in modern society such as power and water that requires governments to exercise greater due care than commercial entities?
    • Companies have legal and practical mechanisms to shield data submitted to government from public release.  What mechanisms do individuals have or should have to address misuse of Open Data?  Could developments in the constitutional right to information policy as articulated in Whalen and Westinghouse Electric Co address Open Data privacy issues?
    • Collecting data costs money, and its release could affect civil liberties.  Yet it is being given away freely, sometimes to immensely profitable firms.  Should governments license data for a fee and/or impose limits on its use, given its value?
    • The privacy principle of “collection limitation” is under siege, with many arguing that use restrictions will be more efficacious for protecting privacy and more workable for big data analysis.  Does the potential of Open Data justify eroding state and federal privacy act collection limitation principles?   What are the ethical dimensions of a government system that deprives the data subject of the ability to obscure or prevent the collection of data about a sensitive issue?  A move from collection restrictions to use regulation raises a number of related issues, detailed below.
    • Are use restrictions efficacious in creating accountability?  Consumer reporting agencies are regulated by use restrictions, yet they are not known for their accountability.  How could use regulations be implemented in the context of Open Data efficaciously?  Can a self-learning algorithm honor data use restrictions?
    • If an Open Dataset were regulated by a use restriction, how could individuals police wrongful uses?   How would plaintiffs overcome the likely defenses or proof of facts in a use regulation system, such as a burden to prove that data were analyzed and the product of that analysis was used in a certain way to harm the plaintiff?  Will plaintiffs ever be able to beat first amendment defenses?
    • The President’s Council of Advisors on Science and Technology big data report emphasizes that analysis is not a “use” of data.  Such an interpretation suggests that NSA metadata analysis and large-scale scanning of communications do not raise privacy issues.  What are the ethical and legal implications of the “analysis is not use” argument in the context of Open Data?
    • Open Data celebrates the idea that information collected by the government can be used by another person for various kinds of analysis.  When analysts are not involved in the collection of data, they are less likely to understand its context and limitations.  How do we ensure that this knowledge is maintained in a use regulation system?
    • Former President William Clinton was admitted under a pseudonym for a procedure at a New York Hospital in 2004.  The hospital detected 1,500 attempts by its own employees to access the President’s records.  With snooping such a tempting activity, how could incentives be crafted to cause self-policing of government data and the self-disclosure of inappropriate uses of Open Data?
    • It is clear that data privacy regulation could hamper some big data efforts.  However, many examples of big data successes hail from highly regulated environments, such as health care and financial services—areas with statutory, common law, and IRB protections.  What are the contours of privacy law that are compatible with big data and Open Data success and which are inherently inimical to it?
    • In recent years, the problem of “too much money in politics” has been addressed with increasing disclosure requirements.  Yet, distrust in government remains high, and individuals identified in donor databases have been subjected to harassment.  Is the answer to problems of distrust in government even more Open Data?
    • What are the ethical and epistemological implications of encouraging government decision-making based upon correlation analysis, without a rigorous understanding of cause and effect?  Are there decisions that should not be left to just correlational proof? While enthusiasm for data science has increased, scientific journals are elevating their standards, with special scrutiny focused on hypothesis-free, multiple comparison analysis. What could legal and policy experts learn from experts in statistics about the nature and limits of open data?…
      To submit a proposal, visit the Conference Management Toolkit (CMT) here.
      Once you have created a profile, the site will allow you to submit your proposal.
      If you have questions, please contact Chris Hoofnagle, principal investigator on this project.”

Sharing Data Is a Form of Corporate Philanthropy


Matt Stempeck in HBR Blog:  “Ever since the International Charter on Space and Major Disasters was signed in 1999, satellite companies like DMC International Imaging have had a clear protocol with which to provide valuable imagery to public actors in times of crisis. In a single week this February, DMCii tasked its fleet of satellites on flooding in the United Kingdom, fires in India, floods in Zimbabwe, and snow in South Korea. Official crisis response departments and relevant UN departments can request on-demand access to the visuals captured by these “eyes in the sky” to better assess damage and coordinate relief efforts.

DMCii is a private company, yet it provides enormous value to the public and social sectors simply by periodically sharing its data.
Back on Earth, companies create, collect, and mine data in their day-to-day business. This data has quickly emerged as one of this century’s most vital assets. Public sector and social good organizations may not have access to the same amount, quality, or frequency of data. This imbalance has inspired a new category of corporate giving foreshadowed by the 1999 Space Charter: data philanthropy.
The satellite imagery example is an area of obvious societal value, but data philanthropy holds even stronger potential closer to home, where a wide range of private companies could give back in meaningful ways by contributing data to public actors. Consider two promising contexts for data philanthropy: responsive cities and academic research.
The centralized institutions of the 20th century allowed for the most sophisticated economic and urban planning to date. But in recent decades, the information revolution has helped the private sector speed ahead in data aggregation, analysis, and applications. It’s well known that there’s enormous value in real-time usage of data in the private sector, but there are similarly huge gains to be won in the application of real-time data to mitigate common challenges.
What if sharing economy companies shared their real-time housing, transit, and economic data with city governments or public interest groups? For example, Uber maintains a “God’s Eye view” of every driver on the road in a city:
stempeck2
Imagine combining this single data feed with an entire portfolio of real-time information. An early leader in this space is the City of Chicago’s urban data dashboard, WindyGrid. The dashboard aggregates an ever-growing variety of public datasets to allow for more intelligent urban management.
stempeck3
Over time, we could design responsive cities that react to this data. A responsive city is one where services, infrastructure, and even policies can flexibly respond to the rhythms of its denizens in real-time. Private sector data contributions could greatly accelerate these nascent efforts.
Data philanthropy could similarly benefit academia. Access to data remains an unfortunate barrier to entry for many researchers. The result is that only researchers with access to certain data, such as full-volume social media streams, can analyze and produce knowledge from this compelling information. Twitter, for example, sells access to a range of real-time APIs to marketing platforms, but the price point often exceeds researchers’ budgets. To accelerate the pursuit of knowledge, Twitter has piloted a program called Data Grants offering access to segments of their real-time global trove to select groups of researchers. With this program, academics and other researchers can apply to receive access to relevant bulk data downloads, such as an period of time before and after an election, or a certain geographic area.
Humanitarian response, urban planning, and academia are just three sectors within which private data can be donated to improve the public condition. There are many more possible applications possible, but few examples to date. For companies looking to expand their corporate social responsibility initiatives, sharing data should be part of the conversation…
Companies considering data philanthropy can take the following steps:

  • Inventory the information your company produces, collects, and analyzes. Consider which data would be easy to share and which data will require long-term effort.
  • Think who could benefit from this information. Who in your community doesn’t have access to this information?
  • Who could be harmed by the release of this data? If the datasets are about people, have they consented to its release? (i.e. don’t pull a Facebook emotional manipulation experiment).
  • Begin conversations with relevant public agencies and nonprofit partners to get a sense of the sort of information they might find valuable and their capacity to work with the formats you might eventually make available.
  • If you expect an onslaught of interest, an application process can help qualify partnership opportunities to maximize positive impact relative to time invested in the program.
  • Consider how you’ll handle distribution of the data to partners. Even if you don’t have the resources to set up an API, regular releases of bulk data could still provide enormous value to organizations used to relying on less-frequently updated government indices.
  • Consider your needs regarding privacy and anonymization. Strip the data of anything remotely resembling personally identifiable information (here are some guidelines).
  • If you’re making data available to researchers, plan to allow researchers to publish their results without obstruction. You might also require them to share the findings with the world under Open Access terms….”

Selected Readings on Sentiment Analysis


The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of sentiment analysis was originally published in 2014.

Sentiment Analysis is a field of Computer Science that uses techniques from natural language processing, computational linguistics, and machine learning to predict subjective meaning from text. The term opinion mining is often used interchangeably with Sentiment Analysis, although it is technically a subfield focusing on the extraction of opinions (the umbrella under which sentiment, evaluation, appraisal, attitude, and emotion all lie).

The rise of Web 2.0 and increased information flow has led to an increase in interest towards Sentiment Analysis — especially as applied to social networks and media. Events causing large spikes in media — such as the 2012 Presidential Election Debates — are especially ripe for analysis. Such analyses raise a variety of implications for the future of crowd participation, elections, and governance.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)

Choi, Eunsol et al. “Hedge detection as a lens on framing in the GMO debates: a position paper.” Proceedings of the Workshop on Extra-Propositional Aspects of Meaning in Computational Linguistics 13 Jul. 2012: 70-79. http://bit.ly/1wweftP

  • Understanding the ways in which participants in public discussions frame their arguments is important for understanding how public opinion is formed. This paper adopts the position that it is time for more computationally-oriented research on problems involving framing. In the interests of furthering that goal, the authors propose the following question: In the controversy regarding the use of genetically-modified organisms (GMOs) in agriculture, do pro- and anti-GMO articles differ in whether they choose to adopt a more “scientific” tone?
  • Prior work on the rhetoric and sociology of science suggests that hedging may distinguish popular-science text from text written by professional scientists for their colleagues. The paper proposes a detailed approach to studying whether hedge detection can be used to understand scientific framing in the GMO debates, and provides corpora to facilitate this study. Some of the preliminary analyses suggest that hedges occur less frequently in scientific discourse than in popular text, a finding that contradicts prior assertions in the literature.

Michael, Christina, Francesca Toni, and Krysia Broda. “Sentiment analysis for debates.” (Unpublished MSc thesis). Department of Computing, Imperial College London (2013). http://bit.ly/Wi86Xv

  • This project aims to expand on existing solutions used for automatic sentiment analysis on text in order to capture support/opposition and agreement/disagreement in debates. In addition, it looks at visualizing the classification results for enhancing the ease of understanding the debates and for showing underlying trends. Finally, it evaluates proposed techniques on an existing debate system for social networking.

Murakami, Akiko, and Rudy Raymond. “Support or oppose?: classifying positions in online debates from reply activities and opinion expressions.” Proceedings of the 23rd International Conference on Computational Linguistics: Posters 23 Aug. 2010: 869-875. https://bit.ly/2Eicfnm

  • In this paper, the authors propose a method for the task of identifying the general positions of users in online debates, i.e., support or oppose the main topic of an online debate, by exploiting local information in their remarks within the debate. An online debate is a forum where each user posts an opinion on a particular topic while other users state their positions by posting their remarks within the debate. The supporting or opposing remarks are made by directly replying to the opinion, or indirectly to other remarks (to express local agreement or disagreement), which makes the task of identifying users’ general positions difficult.
  • A prior study has shown that a link-based method, which completely ignores the content of the remarks, can achieve higher accuracy for the identification task than methods based solely on the contents of the remarks. In this paper, it is shown that utilizing the textual content of the remarks into the link-based method can yield higher accuracy in the identification task.

Pang, Bo, and Lillian Lee. “Opinion mining and sentiment analysis.” Foundations and trends in information retrieval 2.1-2 (2008): 1-135. http://bit.ly/UaCBwD

  • This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems. Its focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis. It includes material on summarization of evaluative text and on broader issues regarding privacy, manipulation, and economic impact that the development of opinion-oriented information-access services gives rise to. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided.

Ranade, Sarvesh et al. “Online debate summarization using topic directed sentiment analysis.” Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining 11 Aug. 2013: 7. http://bit.ly/1nbKtLn

  • Social networking sites provide users a virtual community interaction platform to share their thoughts, life experiences and opinions. Online debate forum is one such platform where people can take a stance and argue in support or opposition of debate topics. An important feature of such forums is that they are dynamic and grow rapidly. In such situations, effective opinion summarization approaches are needed so that readers need not go through the entire debate.
  • This paper aims to summarize online debates by extracting highly topic relevant and sentiment rich sentences. The proposed approach takes into account topic relevant, document relevant and sentiment based features to capture topic opinionated sentences. ROUGE (Recall-Oriented Understudy for Gisting Evaluation, which employ a set of metrics and a software package to compare automatically produced summary or translation against human-produced onces) scores are used to evaluate the system. This system significantly outperforms several baseline systems and show improvement over the state-of-the-art opinion summarization system. The results verify that topic directed sentiment features are most important to generate effective debate summaries.

Schneider, Jodi. “Automated argumentation mining to the rescue? Envisioning argumentation and decision-making support for debates in open online collaboration communities.” http://bit.ly/1mi7ztx

  • Argumentation mining, a relatively new area of discourse analysis, involves automatically identifying and structuring arguments. Following a basic introduction to argumentation, the authors describe a new possible domain for argumentation mining: debates in open online collaboration communities.
  • Based on our experience with manual annotation of arguments in debates, the authors propose argumentation mining as the basis for three kinds of support tools, for authoring more persuasive arguments, finding weaknesses in others’ arguments, and summarizing a debate’s overall conclusions.

When Technologies Combine, Amazing Innovation Happens


FastCoexist: “Innovation occurs both within fields, and in combinations of fields. It’s perhaps the latter that ends up being most groundbreaking. When people of disparate expertise, mindset and ideas work together, new possibilities pop up.
In a new report, the Institute for the Future argues that “technological change is increasingly driven by the combination and recombination of foundational elements.” So, when we think about the future, we need to consider not just fundamental advances (say, in computing, materials, bioscience) but also at the intersection of these technologies.
The report uses combination-analysis in the form of a map. IFTF selects 13 “territories”–what it calls “frontiers of innovation”–and then examines the linkages and overlaps. The result is 20 “combinational forecasts.” “These are the big stories, hot spots that will shape the landscape of technology in the coming decade,” the report explains. “Each combinatorial forecast emerges from the intersection of multiple territories.”…

Quantified Experiences

Advances in brain-imaging techniques will make bring new transparency to our thoughts and feelings. “Assigning precise measurements to feelings like pain through neurofeedback and other techniques could allow for comparison, modulation, and manipulation of these feelings,” the report says. “Direct measurement of our once-private thoughts and feelings can help us understand other people’s experience but will also present challenges regarding privacy and definition of norms.”…

Code Is The Law

The law enforcement of the future may increasingly rely on sensors and programmable devices. “Governance is shifting from reliance on individual responsibility and human policing toward a system of embedded protocols and automatic rule enforcement,” the report says. That in turn means greater power for programmers who are effectively laying down the parameters of the new relationship between government and governed….”

Privacy-Invading Technologies and Privacy by Design


New book by Demetrius Klitou: “Challenged by rapidly developing privacy-invading technologies (PITs), this book provides a convincing set of potential policy recommendations and practical solutions for safeguarding both privacy and security. It shows that benefits such as public security do not necessarily come at the expense of privacy and liberty overall.
Backed up by comprehensive study of four specific PITs – Body scanners; Public space CCTV microphones; Public space CCTV loudspeakers; and Human-implantable microchips (RFID implants/GPS implants) – the author shows how laws that regulate the design and development of PITs may more effectively protect privacy than laws that only regulate data controllers and the use of such technologies. New rules and regulations should therefore incorporate fundamental privacy principles through what is known as ‘Privacy by Design’.
The numerous sources explored by the author provide a workable overview of the positions of academia, industry, government and relevant international organizations and NGOs.

  • Explores a relatively novel approach of protecting privacy
  • Offers a convincing set of potential policy recommendations and practical solutions
  • Provides a workable overview of the positions of academia, industry, government and relevant international organizations and NGOs”

No silver bullet: De-identification still doesn’t work


Arvind Narayanan and Edward W. Felten: “Paul Ohm’s 2009 article Broken Promises of Privacy spurred a debate in legal and policy circles on the appropriate response to computer science research on re-identification techniques. In this debate, the empirical research has often been misunderstood or misrepresented. A new report by Ann Cavoukian and Daniel Castro is full of such inaccuracies, despite its claims of “setting the record straight.” In a response to this piece, Ed Felten and I point out eight of our most serious points of disagreement with Cavoukian and Castro. The thrust of our arguments is that (i) there is no evidence that de-identification works either in theory or in practice and (ii) attempts to quantify its efficacy are unscientific and promote a false sense of security by assuming unrealistic, artificially constrained models of what an adversary might do. Specifically, we argue that:

  1. There is no known effective method to anonymize location data, and no evidence that it’s meaningfully achievable.
  2. Computing re-identification probabilities based on proof-of-concept demonstrations is silly.
  3. Cavoukian and Castro ignore many realistic threats by focusing narrowly on a particular model of re-identification.
  4. Cavoukian and Castro concede that de-identification is inadequate for high-dimensional data. But nowadays most interesting datasets are high-dimensional.
  5. Penetrate-and-patch is not an option.
  6. Computer science knowledge is relevant and highly available.
  7. Cavoukian and Castro apply different standards to big data and re-identification techniques.
  8. Quantification of re-identification probabilities, which permeates Cavoukian and Castro’s arguments, is a fundamentally meaningless exercise.

Data privacy is a hard problem. Data custodians face a choice between roughly three alternatives: sticking with the old habit of de-identification and hoping for the best; turning to emerging technologies like differential privacy that involve some trade-offs in utility and convenience; and using legal agreements to limit the flow and use of sensitive data. These solutions aren’t fully satisfactory, either individually or in combination, nor is any one approach the best in all circumstances. Change is difficult. When faced with the challenge of fostering data science while preventing privacy risks, the urge to preserve the status quo is understandable. However, this is incompatible with the reality of re-identification science. If a “best of both worlds” solution exists, de-identification is certainly not that solution. Instead of looking for a silver bullet, policy makers must confront hard choices.”