Paper by Danica Dillion et al: “Recent work suggests that language models such as GPT can make human-like judgments across a number of domains. We explore whether and when language models might replace human participants in psychological science. We review nascent research, provide a theoretical model, and outline caveats of using AI as a participant…(More)”
Diversity of Expertise is Key to Scientific Impact
Paper by Angelo Salatino, Simone Angioni, Francesco Osborne, Diego Reforgiato Recupero, Enrico Motta: “Understanding the relationship between the composition of a research team and the potential impact of their research papers is crucial as it can steer the development of new science policies for improving the research enterprise. Numerous studies assess how the characteristics and diversity of research teams can influence their performance across several dimensions: ethnicity, internationality, size, and others. In this paper, we explore the impact of diversity in terms of the authors’ expertise. To this purpose, we retrieved 114K papers in the field of Computer Science and analysed how the diversity of research fields within a research team relates to the number of citations their papers received in the upcoming 5 years. The results show that two different metrics we defined, reflecting the diversity of expertise, are significantly associated with the number of citations. This suggests that, at least in Computer Science, diversity of expertise is key to scientific impact…(More)”.
Data collaborations at a local scale: Lessons learnt in Rennes (2010–2021)
Paper by Simon Chignard and Marion Glatron: “Data sharing is a requisite for developing data-driven innovation and collaboration at the local scale. This paper aims to identify key lessons and recommendations for building trustworthy data governance at the local scale, including the public and private sectors. Our research is based on the experience gained in Rennes Metropole since 2010 and focuses on two thematic use cases: culture and energy. For each one, we analyzed how the power relations between actors and the local public authority shape the modalities of data sharing and exploitation. The paper will elaborate on challenges and opportunities at the local level, in perspective with the national and European frameworks…(More)”.
Artificial Intelligence, Big Data, Algorithmic Management, and Labor Law
Chapter by Pauline Kim: “Employers are increasingly relying on algorithms and AI to manage their workforces, using automated systems to recruit, screen, select, supervise, discipline, and even terminate employees. This chapter explores the effects of these systems on the rights of workers in standard work relationships, who are presumptively protected by labor laws. It examines how these new technological tools affect fundamental worker interests and how existing law applies, focusing primarily as examples on two particular concerns—nondiscrimination and privacy. Although current law provides some protections, legal doctrine has largely developed with human managers in mind, and as a result, fails to fully apprehend the risks posed by algorithmic tools. Thus, while anti-discrimination law prohibits discrimination by workplace algorithms, the existing framework has a number of gaps and uncertainties when applied to these systems. Similarly, traditional protections for employee privacy are ill-equipped to address the sheer volume and granularity of worker data that can now be collected, and the ability of computational techniques to extract new insights and infer sensitive information from that data. More generally, the expansion of algorithmic management affects other fundamental worker interests because it tends to increase employer power vis à vis labor. This chapter concludes by briefly considering the role that data protection laws might play in addressing the risks of algorithmic management…(More)”.
Opening industry data: The private sector’s role in addressing societal challenges
Paper by Jennifer Hansen and Yiu-Shing Pang: “This commentary explores the potential of private companies to advance scientific progress and solve social challenges through opening and sharing their data. Open data can accelerate scientific discoveries, foster collaboration, and promote long-term business success. However, concerns regarding data privacy and security can hinder data sharing. Companies have options to mitigate the challenges through developing data governance mechanisms, collaborating with stakeholders, communicating the benefits, and creating incentives for data sharing, among others. Ultimately, open data has immense potential to drive positive social impact and business value, and companies can explore solutions for their specific circumstances and tailor them to their specific needs…(More)”.
Turning the Cacophony of the Internet’s Tower of Babel into a Coherent General Collective Intelligence
Paper by Andy E. Williams: “Increasing the number, diversity, or uniformity of opinions in a group does not necessarily imply that those opinions will converge into a single more “intelligent” one, if an objective definition of the term intelligent exists as it applies to opinions. However, a recently developed approach called human-centric functional modeling provides what might be the first general model for individual or collective intelligence. In the case of the collective intelligence of groups, this model suggests how a cacophony of incoherent opinions in a large group might be combined into coherent collective reasoning by a hypothetical platform called “general collective intelligence” (GCI). When applied to solving group problems, a GCI might be considered a system that leverages collective reasoning to increase the beneficial insights that might be derived from the information available to any group. This GCI model also suggests how the collective reasoning ability (intelligence) might be exponentially increased compared to the intelligence of any individual in a group, potentially resulting in what is predicted to be a collective superintelligence….(More)”
Digital Sovereignty and Governance in the Data Economy: Data Trusteeship Instead of Property Rights on Data
Chapter by Ingrid Schneider: “This chapter challenges the current business models of the dominant platforms in the digital economy. In the search for alternatives, and towards the aim of achieving digital sovereignty, it proceeds in four steps: First, it discusses scholarly proposals to constitute a new intellectual property right on data. Second, it examines four models of data governance distilled from the literature that seek to see data administered (1) as a private good regulated by the market, (2) as a public good regulated by the state, (3) as a common good managed by a commons’ community, and (4) as a data trust supervised by means of stewardship by a trustee. Third, the strengths and weaknesses of each of these models, which are ideal types and serve as heuristics, are critically appraised. Fourth, data trusteeship which at present seems to be emerging as a promising implementation model for better data governance, is discussed in more detail, both in an empirical-descriptive way, by referring to initiatives in several countries, and analytically, by highlighting the challenges and pitfalls of data trusteeship…(More)”.
Opportunities and Risks of LLMs for Scalable Deliberation with Polis
Paper by Christopher Small et al: “Polis is a platform that leverages machine intelligence to scale up deliberative processes. In this paper, we explore the opportunities and risks associated with applying Large Language Models (LLMs) towards challenges with facilitating, moderating and summarizing the results of Polis engagements. In particular, we demonstrate with pilot experiments using Anthropic’s Claude that LLMs can indeed augment human intelligence to help more efficiently run Polis conversations. In particular, we find that summarization capabilities enable categorically new methods with immense promise to empower the public in collective meaning-making exercises. And notably, LLM context limitations have a significant impact on insight and quality of these results.
However, these opportunities come with risks. We discuss some of these risks, as well as principles and techniques for characterizing and mitigating them, and the implications for other deliberative or political systems that may employ LLMs. Finally, we conclude with several open future research directions for augmenting tools like Polis with LLMs….(More)”.
Artificial Intelligence for Emergency Response
Paper by Ayan Mukhopadhyay: “Emergency response management (ERM) is a challenge faced by communities across the globe. First responders must respond to various incidents, such as fires, traffic accidents, and medical emergencies. They must respond quickly to incidents to minimize the risk to human life. Consequently, considerable attention has been devoted to studying emergency incidents and response in the last several decades. In particular, data-driven models help reduce human and financial loss and improve design codes, traffic regulations, and safety measures. This tutorial paper explores four sub-problems within emergency response: incident prediction, incident detection, resource allocation, and resource dispatch. We aim to present mathematical formulations for these problems and broad frameworks for each problem. We also share open-source (synthetic) data from a large metropolitan area in the USA for future work on data-driven emergency response…(More)”.
Open Data on GitHub: Unlocking the Potential of AI
Paper by Anthony Cintron Roman, Kevin Xu, Arfon Smith, Jehu Torres Vega, Caleb Robinson, Juan M Lavista Ferres: “GitHub is the world’s largest platform for collaborative software development, with over 100 million users. GitHub is also used extensively for open data collaboration, hosting more than 800 million open data files, totaling 142 terabytes of data. This study highlights the potential of open data on GitHub and demonstrates how it can accelerate AI research. We analyze the existing landscape of open data on GitHub and the patterns of how users share datasets. Our findings show that GitHub is one of the largest hosts of open data in the world and has experienced an accelerated growth of open data assets over the past four years. By examining the open data landscape on GitHub, we aim to empower users and organizations to leverage existing open datasets and improve their discoverability — ultimately contributing to the ongoing AI revolution to help address complex societal issues. We release the three datasets that we have collected to support this analysis as open datasets at this https URL…(More)”