Why AI Failed to Live Up to Its Potential During the Pandemic

Essay by Bhaskar Chakravorti: “The pandemic could have been the moment when AI made good on its promising potential. There was an unprecedented convergence of the need for fast, evidence-based decisions and large-scale problem-solving with datasets spilling out of every country in the world. Instead, AI failed in myriad, specific ways that underscore where this technology is still weak: Bad datasets, embedded bias and discrimination, susceptibility to human error, and a complex, uneven global context all caused critical failures. But, these failures also offer lessons on how we can make AI better: 1) we need to find new ways to assemble comprehensive datasets and merge data from multiple sources, 2) there needs to be more diversity in data sources, 3) incentives must be aligned to ensure greater cooperation across teams and systems, and 4) we need international rules for sharing data…(More)”.