Jonathan Zittrain in The New Yorker: “Like many medications, the wakefulness drug modafinil, which is marketed under the trade name Provigil, comes with a small, tightly folded paper pamphlet. For the most part, its contents—lists of instructions and precautions, a diagram of the drug’s molecular structure—make for anodyne reading. The subsection called “Mechanism of Action,” however, contains a sentence that might induce sleeplessness by itself: “The mechanism(s) through which modafinil promotes wakefulness is unknown.”
Provigil isn’t uniquely mysterious. Many drugs receive regulatory approval, and are widely prescribed, even though no one knows exactly how they work. This mystery is built into the process of drug discovery, which often proceeds by trial and error. Each year, any number of new substances are tested in cultured cells or animals; the best and safest of those are tried out in people. In some cases, the success of a drug promptly inspires new research that ends up explaining how it works—but not always. Aspirin was discovered in 1897, and yet no one convincingly explained how it worked until 1995. The same phenomenon exists elsewhere in medicine. Deep-brain stimulation involves the implantation of electrodes in the brains of people who suffer from specific movement disorders, such as Parkinson’s disease; it’s been in widespread use for more than twenty years, and some think it should be employed for other purposes, including general cognitive enhancement. No one can say how it works.
This approach to discovery—answers first, explanations later—accrues what I call intellectual debt. It’s possible to discover what works without knowing why it works, and then to put that insight to use immediately, assuming that the underlying mechanism will be figured out later. In some cases, we pay off this intellectual debt quickly. But, in others, we let it compound, relying, for decades, on knowledge that’s not fully known.
In the past, intellectual debt has been confined to a few areas amenable to trial-and-error discovery, such as medicine. But that may be changing, as new techniques in artificial intelligence—specifically, machine learning—increase our collective intellectual credit line. Machine-learning systems work by identifying patterns in oceans of data. Using those patterns, they hazard answers to fuzzy, open-ended questions. Provide a neural network with labelled pictures of cats and other, non-feline objects, and it will learn to distinguish cats from everything else; give it access to medical records, and it can attempt to predict a new hospital patient’s likelihood of dying. And yet, most machine-learning systems don’t uncover causal mechanisms. They are statistical-correlation engines. They can’t explain why they think some patients are more likely to die, because they don’t “think” in any colloquial sense of the word—they only answer. As we begin to integrate their insights into our lives, we will, collectively, begin to rack up more and more intellectual debt….(More)”.