Defining Open Data


Open Knowledge Foundation Blog: “Open data is data that can be freely used, shared and built-on by anyone, anywhere, for any purpose. This is the summary of the full Open Definition which the Open Knowledge Foundation created in 2005 to provide both a succinct explanation and a detailed definition of open data.
As the open data movement grows, and even more governments and organisations sign up to open data, it becomes ever more important that there is a clear and agreed definition for what “open data” means if we are to realise the full benefits of openness, and avoid the risks of creating incompatibility between projects and splintering the community.

Open can apply to information from any source and about any topic. Anyone can release their data under an open licence for free use by and benefit to the public. Although we may think mostly about government and public sector bodies releasing public information such as budgets or maps, or researchers sharing their results data and publications, any organisation can open information (corporations, universities, NGOs, startups, charities, community groups and individuals).

Read more about different kinds of data in our one page introduction to open data
There is open information in transport, science, products, education, sustainability, maps, legislation, libraries, economics, culture, development, business, design, finance …. So the explanation of what open means applies to all of these information sources and types. Open may also apply both to data – big data and small data – or to content, like images, text and music!
So here we set out clearly what open means, and why this agreed definition is vital for us to collaborate, share and scale as open data and open content grow and reach new communities.

What is Open?

The full Open Definition provides a precise definition of what open data is. There are 2 important elements to openness:

  • Legal openness: you must be allowed to get the data legally, to build on it, and to share it. Legal openness is usually provided by applying an appropriate (open) license which allows for free access to and reuse of the data, or by placing data into the public domain.
  • Technical openness: there should be no technical barriers to using that data. For example, providing data as printouts on paper (or as tables in PDF documents) makes the information extremely difficult to work with. So the Open Definition has various requirements for “technical openness,” such as requiring that data be machine readable and available in bulk.”…

Imagining Data Without Division


Thomas Lin in Quanta Magazine: “As science dives into an ocean of data, the demands of large-scale interdisciplinary collaborations are growing increasingly acute…Seven years ago, when David Schimel was asked to design an ambitious data project called the National Ecological Observatory Network, it was little more than a National Science Foundation grant. There was no formal organization, no employees, no detailed science plan. Emboldened by advances in remote sensing, data storage and computing power, NEON sought answers to the biggest question in ecology: How do global climate change, land use and biodiversity influence natural and managed ecosystems and the biosphere as a whole?…
For projects like NEON, interpreting the data is a complicated business. Early on, the team realized that its data, while mid-size compared with the largest physics and biology projects, would be big in complexity. “NEON’s contribution to big data is not in its volume,” said Steve Berukoff, the project’s assistant director for data products. “It’s in the heterogeneity and spatial and temporal distribution of data.”
Unlike the roughly 20 critical measurements in climate science or the vast but relatively structured data in particle physics, NEON will have more than 500 quantities to keep track of, from temperature, soil and water measurements to insect, bird, mammal and microbial samples to remote sensing and aerial imaging. Much of the data is highly unstructured and difficult to parse — for example, taxonomic names and behavioral observations, which are sometimes subject to debate and revision.
And, as daunting as the looming data crush appears from a technical perspective, some of the greatest challenges are wholly nontechnical. Many researchers say the big science projects and analytical tools of the future can succeed only with the right mix of science, statistics, computer science, pure mathematics and deft leadership. In the big data age of distributed computing — in which enormously complex tasks are divided across a network of computers — the question remains: How should distributed science be conducted across a network of researchers?
Part of the adjustment involves embracing “open science” practices, including open-source platforms and data analysis tools, data sharing and open access to scientific publications, said Chris Mattmann, 32, who helped develop a precursor to Hadoop, a popular open-source data analysis framework that is used by tech giants like Yahoo, Amazon and Apple and that NEON is exploring. Without developing shared tools to analyze big, messy data sets, Mattmann said, each new project or lab will squander precious time and resources reinventing the same tools. Likewise, sharing data and published results will obviate redundant research.
To this end, international representatives from the newly formed Research Data Alliance met this month in Washington to map out their plans for a global open data infrastructure.”

Undefined By Data: A Survey of Big Data Definitions


Paper by Jonathan Stuart Ward and Adam Barker: “The term big data has become ubiquitous. Owing to shared origin between academia, industry and the media there is no single unified definition, and various stakeholders provide diverse and often contradictory definitions. The lack of a consistent definition introduces ambiguity and hampers discourse relating to big data. This short paper attempts to collate the various definitions which have gained some degree of traction and to furnish a clear and concise definition of an otherwise ambiguous term…
Despite the range and differences existing within each of the aforementioned definitions there are some points of similarity. Notably all definitions make at least one of the following assertions:
Size: the volume of the datasets is a critical factor.
Complexity: the structure, behaviour and permutations of the datasets is a critical factor.
Technologies: the tools and techniques which are used to process a sizable or complex dataset is a critical factor.
The definitions surveyed here all encompass at least one of these factors, most encompass two. An extrapolation of these factors would therefore postulate the following: Big data is a term describing the storage and analysis of large and or complex data sets using a series of techniques including, but not limited to: NoSQL, MapReduce and machine learning.”

5 Ways Cities Are Using Big Data


Eric Larson in Mashable: “New York City released more than 200 high-value data sets to the public on Monday — a way, in part, to provide more content for open-sourced mapping projects like OpenStreetMap.
It’s one of the many releases since the Local Law 11 of 2012 passed in February, which calls for more transparency of the city government’s collected data.
But it’s not just New York: Cities across the world, large and small, are utilizing big data sets — like traffic statistics, energy consumption rates and GPS mapping — to launch projects to help their respective communities.
We rounded up a few of our favorites below….

1. Seattle’s Power Consumption

The city of Seattle recently partnered with Microsoft and Accenture on a pilot project to reduce the area’s energy usage. Using Microsoft’s Azure cloud, the project will collect and analyze hundreds of data sets collected from four downtown buildings’ management systems.
With predictive analytics, then, the system will work to find out what’s working and what’s not — i.e. where energy can be used less, or not at all. The goal is to reduce power usage by 25%.

2. SpotHero

Finding parking spots — especially in big cities — is undoubtably a headache.

SpotHero is an app, for both iOS and Android devices, that tracks down parking spots in a select number of cities. How it works: Users type in an address or neighborhood (say, Adams Morgan in Washington, D.C.) and are taken to a listing of available garages and lots nearby — complete with prices and time durations.
The app tracks availability in real-time, too, so a spot is updated in the system as soon as it’s snagged.
Seven cities are currently synced with the app: Washington, D.C., New York, Chicago, Baltimore, Boston, Milwaukee and Newark, N.J.

3. Adopt-a-Hydrant

Anyone who’s spent a winter in Boston will agree: it snows.

In January, the city’s Office of New Urban Mechanics released an app called Adopt-a-Hydrant. The program is mapped with every fire hydrant in the city proper — more than 13,000, according to a Harvard blog post — and lets residents pledge to shovel out one, or as many as they choose, in the almost inevitable event of a blizzard.
Once a pledge is made, volunteers receive a notification if their hydrant — or hydrants — become buried in snow.

4. Adopt-a-Sidewalk

Similar to Adopt-a-Hydrant, Chicago’s Adopt-a-Sidewalk app lets residents of the Windy City pledge to shovel sidewalks after snowfall. In a city just as notorious for snowstorms as Boston, it’s an effective way to ensure public spaces remain free of snow and ice — especially spaces belonging to the elderly or disabled.

If you’re unsure which part of town you’d like to “adopt,” just register on the website and browse the map — you’ll receive a pop-up notification for each street you swipe that’s still available.

5. Less Congestion for Lyon

Last year, researchers at IBM teamed up with the city of Lyon, France (about four hours south of Paris), to build a system that helps traffic operators reduce congestion on the road.

The system, called the “Decision Support System Optimizer (DSSO),” uses real-time traffic reports to detect and predict congestions. If an operator sees that a traffic jam is likely to occur, then, she/he can adjust traffic signals accordingly to keep the flow of cars moving smoothly.
It’s an especially helpful tool for emergencies — say, when an ambulance is en route to the hospital. Over time, the algorithms in the system will “learn” from its most successful recommendations, then apply that knowledge when making future predictions.”

Civics for a Digital Age


Jathan Sadowski  in the Atlantic on “Eleven principles for relating to cities that are automated and smart: Over half of the world’s population lives in urban environments, and that number is rapidly growing according to the World Health Organization. Many of us interact with the physical environments of cities on a daily basis: the arteries that move traffic, the grids that energize our lives, the buildings that prevent and direct actions. For many tech companies, though, much of this urban infrastructure is ripe for a digital injection. Cities have been “dumb” for millennia. It’s about time they get “smart” — or so the story goes….
Before accepting the techno-hype as a fait accompli, we should consider the implications such widespread technological changes might have on society, politics, and life in general. Urban scholar and historian Lewis Mumford warned of “megamachines” where people become mere components — like gears and transistors — in a hierarchical, human machine. The proliferation of smart projects requires an updated way of thinking about their possibilities, complications, and effects.
A new book, Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, by Anthony Townsend, a research director at the Institute for the Future, provides some groundwork for understanding how these urban projects are occurring and what guiding principles we might use in directing their development. Townsend sets out to sketch a new understanding of “civics,” one that will account for new technologies.
The foundation for his theory speaks to common, worthwhile concerns: “Until now, smart-city visions have been controlling us. What we need is a new social code to bring meaning and to exert control over the technological code of urban operating systems.” It’s easy to feel like technologies — especially urban ones that are, at once, ubiquitous and often unseen to city-dwellers — have undue influence over our lives. Townsend’s civics, which is based on eleven principles, looks to address, prevent, and reverse that techno-power.”

From Crowd-Sourcing Potholes to Community Policing


New paper by Manik Suri (GovLab): “The tragic Boston Marathon bombing and hair-raising manhunt that ensued was a sobering event. It also served as a reminder that emerging “civic technologies” – platforms and applications that enable citizens to connect and collaborate with each other and with government – are more important today than ever before. As commentators have noted, local police and federal agents utilized a range of technological platforms to tap the “wisdom of the crowd,” relying on thousands of private citizens to develop a “hive mind” that identified two suspects within a record period of time.
In the immediate wake of the devastating attack on April 15th, investigators had few leads. But within twenty-four hours, senior FBI officials, determined to seek “assistance from the public,” called on everyone with information to submit all media, tips, and leads related to the Boston Marathon attack. This unusual request for help yielded thousands of images and videos from local Bostonians, tourists, and private companies through technological channels ranging from telephone calls and emails to Flickr posts and Twitter messages. In mere hours, investigators were able to “crowd-source” a tremendous amount of data – including thousands of images from personal cameras, amateur videos from smart phones, and cell-tower information from private carriers. Combing through data from this massive network of “eyes and ears,” law enforcement officials were quickly able to generate images of two lead suspects – enabling a “modern manhunt” to commence immediately.
Technological innovations have transformed our commercial, political, and social realities. These advances include new approaches to how we generate knowledge, access information, and interact with one another, as well as new pathways for building social movements and catalyzing political change. While a significant body of academic research has focused on the role of technology in transforming electoral politics and social movements, less attention has been paid to how technological innovation can improve the process of governance itself.
A growing number of platforms and applications lie at this intersection of technology and governance, in what might be termed the “civic technology” sector. Broadly speaking, this sector involves the application of new information and communication technologies – ranging from robust social media platforms to state-of-the-art big data analysis systems – to address public policy problems. Civic technologies encompass enterprises that “bring web technologies directly to government, build services on top of government data for citizens, and change the way citizens ask, get, or need services from government.” These technologies have the potential to transform governance by promoting greater transparency in policy-making, increasing government efficiency, and enhancing citizens’ participation in public sector decision-making.

Three Paradoxes of Big Data


New Paper by Neil M. Richards and Jonathan H. King in the Stanford Law Review Online:Big data is all the rage. Its proponents tout the use of sophisticated analytics to mine large data sets for insight as the solution to many of our society’s problems. These big data evangelists insist that data-driven decisionmaking can now give us better predictions in areas ranging from college admissions to dating to hiring to medicine to national security and crime prevention. But much of the rhetoric of big data contains no meaningful analysis of its potential perils, only the promise. We don’t deny that big data holds substantial potential for the future, and that large dataset analysis has important uses today. But we would like to sound a cautionary note and pause to consider big data’s potential more critically. In particular, we want to highlight three paradoxes in the current rhetoric about big data to help move us toward a more complete understanding of the big data picture. First, while big data pervasively collects all manner of private information, the operations of big data itself are almost entirely shrouded in legal and commercial secrecy. We call this the Transparency Paradox. Second, though big data evangelists talk in terms of miraculous outcomes, this rhetoric ignores the fact that big data seeks to identify at the expense of individual and collective identity. We call this the Identity Paradox. And third, the rhetoric of big data is characterized by its power to transform society, but big data has power effects of its own, which privilege large government and corporate entities at the expense of ordinary individuals. We call this the Power Paradox. Recognizing the paradoxes of big data, which show its perils alongside its potential, will help us to better understand this revolution. It may also allow us to craft solutions to produce a revolution that will be as good as its evangelists predict.”

(Appropriate) Big Data for Climate Resilience?


Amy Luers at the Stanford Social Innovation Review: “The answer to whether big data can help communities build resilience to climate change is yes—there are huge opportunities, but there are also risks.

Opportunities

  • Feedback: Strong negative feedback is core to resilience. A simple example is our body’s response to heat stress—sweating, which is a natural feedback to cool down our body. In social systems, feedbacks are also critical for maintaining functions under stress. For example, communication by affected communities after a hurricane provides feedback for how and where organizations and individuals can provide help. While this kind of feedback used to rely completely on traditional communication channels, now crowdsourcing and data mining projects, such as Ushahidi and Twitter Earthquake detector, enable faster and more-targeted relief.
  • Diversity: Big data is enhancing diversity in a number of ways. Consider public health systems. Health officials are increasingly relying on digital detection methods, such as Google Flu Trends or Flu Near You, to augment and diversify traditional disease surveillance.
  • Self-Organization: A central characteristic of resilient communities is the ability to self-organize. This characteristic must exist within a community (see the National Research Council Resilience Report), not something you can impose on it. However, social media and related data-mining tools (InfoAmazonia, Healthmap) can enhance situational awareness and facilitate collective action by helping people identify others with common interests, communicate with them, and coordinate efforts.

Risks

  • Eroding trust: Trust is well established as a core feature of community resilience. Yet the NSA PRISM escapade made it clear that big data projects are raising privacy concerns and possibly eroding trust. And it is not just an issue in government. For example, Target analyzes shopping patterns and can fairly accurately guess if someone in your family is pregnant (which is awkward if they know your daughter is pregnant before you do). When our trust in government, business, and communities weakens, it can decrease a society’s resilience to climate stress.
  • Mistaking correlation for causation: Data mining seeks meaning in patterns that are completely independent of theory (suggesting to some that theory is dead). This approach can lead to erroneous conclusions when correlation is mistakenly taken for causation. For example, one study demonstrated that data mining techniques could show a strong (however spurious) correlation between the changes in the S&P 500 stock index and butter production in Bangladesh. While interesting, a decision support system based on this correlation would likely prove misleading.
  • Failing to see the big picture: One of the biggest challenges with big data mining for building climate resilience is its overemphasis on the hyper-local and hyper-now. While this hyper-local, hyper-now information may be critical for business decisions, without a broader understanding of the longer-term and more-systemic dynamism of social and biophysical systems, big data provides no ability to understand future trends or anticipate vulnerabilities. We must not let our obsession with the here and now divert us from slower-changing variables such as declining groundwater, loss of biodiversity, and melting ice caps—all of which may silently define our future. A related challenge is the fact that big data mining tends to overlook the most vulnerable populations. We must not let the lure of the big data microscope on the “well-to-do” populations of the world make us blind to the less well of populations within cities and communities that have more limited access to smart phones and the Internet.”

Open data for accountable governance: Is data literacy the key to citizen engagement?


at UNDP’s Voices of Eurasia blog: “How can technology connect citizens with governments, and how can we foster, harness, and sustain the citizen engagement that is so essential to anti-corruption efforts?
UNDP has worked on a number of projects that use technology to make it easier for citizens to report corruption to authorities:

These projects are showing some promising results, and provide insights into how a more participatory, interactive government could develop.
At the heart of the projects is the ability to use citizen generated data to identify and report problems for governments to address….

Wanted: Citizen experts

As Kenneth Cukier, The Economist’s Data Editor, has discussed, data literacy will become the new computer literacy. Big data is still nascent and it is impossible to predict exactly how it will affect society as a whole. What we do know is that it is here to stay and data literacy will be integral to our lives.
It is essential that we understand how to interact with big data and the possibilities it holds.
Data literacy needs to be integrated into the education system. Educating non-experts to analyze data is critical to enabling broad participation in this new data age.
As technology advances, key government functions become automated, and government data sharing increases, newer ways for citizens to engage will multiply.
Technology changes rapidly, but the human mind and societal habits cannot. After years of closed government and bureaucratic inefficiency, adaptation of a new approach to governance will take time and education.
We need to bring up a generation that sees being involved in government decisions as normal, and that views participatory government as a right, not an ‘innovative’ service extended by governments.

What now?

In the meantime, while data literacy lies in the hands of a few, we must continue to connect those who have the technological skills with citizen experts seeking to change their communities for the better – as has been done in many a Social Innovation Camps recently (in Montenegro, Ukraine and Armenia at Mardamej and Mardamej Relaoded and across the region at Hurilab).
The social innovation camp and hackathon models are an increasingly debated topic (covered by Susannah Vila, David Eaves, Alex Howard and Clay Johnson).
On the whole, evaluations are leading to newer models that focus on greater integration of mentorship to increase sustainability – which I readily support. However, I do have one comment:
Social innovation camps are often criticized for a lack of sustainability – a claim based on the limited number of apps that go beyond the prototype phase. I find a certain sense of irony in this, for isn’t this what innovation is about: Opening oneself up to the risk of failure in the hope of striking something great?
In the words of Vinod Khosla:

“No failure means no risk, which means nothing new.”

As more data is released, the opportunity for new apps and new ways for citizen interaction will multiply and, who knows, someone might come along and transform government just as TripAdvisor transformed the travel industry.”

Public Open Data: The Good, the Bad, the Future


at IDEALAB: “Some of the most powerful tools combine official public data with social media or other citizen input, such as the recent partnership between Yelp and the public health departments in New York and San Francisco for restaurant hygiene inspection ratings. In other contexts, such tools can help uncover and ultimately reduce corruption by making it easier to “follow the money.”
Despite the opportunities offered by “free data,” this trend also raises new challenges and concerns, among them, personal privacy and security. While attention has been devoted to the unsettling power of big data analysis and “predictive analytics” for corporate marketing, similar questions could be asked about the value of public data. Does it contribute to community cohesion that I can find out with a single query how much my neighbors paid for their house or (if employed by public agencies) their salaries? Indeed, some studies suggest that greater transparency leads not to greater trust in government but to resignation and apathy.
Exposing certain law enforcement data also increases the possibility of vigilantism. California law requires the registration and publication of the home addresses of known sex offenders, for instance. Or consider the controversy and online threats that erupted when, shortly after the Newtown tragedy, a newspaper in New York posted an interactive map of gun permit owners in nearby counties.
…Policymakers and officials must still mind the “big data gap.”So what does the future hold for open data? Publishing data is only one part of the information ecosystem. To be useful, tools must be developed for cleaning, sorting, analyzing and visualizing it as well. …
For-profit companies and non-profit watchdog organizations will continue to emerge and expand, building on the foundation of this data flood. Public-private partnerships such as those between San Francisco and Appallicious or Granicus, startups created by Code for America’s Incubator, and non-partisan organizations like the Sunlight Foundation and MapLight rely on public data repositories for their innovative applications and analysis.
Making public data more accessible is an important goal and offers enormous potential to increase civic engagement. To make the most effective and equitable use of this resource for the public good, cities and other government entities should invest in the personnel and equipment — hardware and software — to make it universally accessible. At the same time, Chief Data Officers (or equivalent roles) should also be alert to the often hidden challenges of equity, inclusion, privacy, and security.”