Citizen Science: The Law and Ethics of Public Access to Medical Big Data


New Paper by Sharona Hoffman: Patient-related medical information is becoming increasingly available on the Internet, spurred by government open data policies and private sector data sharing initiatives. Websites such as HealthData.gov, GenBank, and PatientsLikeMe allow members of the public to access a wealth of health information. As the medical information terrain quickly changes, the legal system must not lag behind. This Article provides a base on which to build a coherent data policy. It canvasses emergent data troves and wrestles with their legal and ethical ramifications.
Publicly accessible medical data have the potential to yield numerous benefits, including scientific discoveries, cost savings, the development of patient support tools, healthcare quality improvement, greater government transparency, public education, and positive changes in healthcare policy. At the same time, the availability of electronic personal health information that can be mined by any Internet user raises concerns related to privacy, discrimination, erroneous research findings, and litigation. This Article analyzes the benefits and risks of health data sharing and proposes balanced legislative, regulatory, and policy modifications to guide data disclosure and use.”

Agency Liability Stemming from Citizen-Generated Data


Paper by Bailey Smith for The Wilson Center’s Science and Technology Innovation Program: “New ways to gather data are on the rise. One of these ways is through citizen science. According to a new paper by Bailey Smith, JD, federal agencies can feel confident about using citizen science for a few reasons. First, the legal system provides significant protection from liability through the Federal Torts Claim Act (FTCA) and Administrative Procedures Act (APA). Second, training and technological innovation has made it easier for the non-scientist to collect high quality data.”

An Air-Quality Monitor You Take with You


MIT Technology Review: “A startup is building a wearable air-quality monitor using a sensing technology that can cheaply detect the presence of chemicals around you in real time. By reporting the information its sensors gather to an app on your smartphone, the technology could help people with respiratory conditions and those who live in highly polluted areas keep tabs on exposure.
Berkeley, California-based Chemisense also plans to crowdsource data from users to show places around town where certain compounds are identified.
Initially, the company plans to sell a $150 wristband geared toward kids with asthma—of which there are nearly 7 million in the U.S., according to data from the Centers for Disease Control and Prevention— to help them identify places and pollutants that tend to provoke attacks,  and track their exposure to air pollution over time. The company hopes people with other respiratory conditions, and those who are just concerned about air pollution, will be interested, too.
In the U.S., air quality is monitored at thousands of stations across the country; maps and forecasts can be viewed online. But these monitors offer accurate readings only in their location.
Chemisense has not yet made its initial product, but it expects it will be a wristband using polymers treated with charged nanoparticles of carbon such that the polymers swell in the presence of certain chemical vapors, changing the resistance of a circuit.”

This Exercise App Tracks Trends on How We Move In Different Cities


Mark Byrnes at CityLab: “An app designed to encourage exercise can also tell us a lot about the way different cities get from point A to B.
The app, called Human, runs in the background of your iPhone, automatically detecting activities like walking, cycling, running, and motorized transport. The point is to encourage you to exercise for at least 30 minutes a day.
Almost a year since Human launched (last August), its developers have released stunning visualization of all that movement: 7.5 million miles traveled by their app users so far.
On their site, you can look into the mobility data inside 30 different cities. Once you click on one, you’ll be greeted with a pie chart that shows the distribution of activity within that city lined up against a pie chart that shows the international average.
In the case of Amsterdam, its transportation clichés are verified. App users in the bike-loving city use two wheels way more than they use four. And they walk about as much as anywhere else:

Human then shows the paths traveled by their users. When it comes to Amsterdam, the results look almost exactly like the city’s entire street grid, no matter what physical activity is being shown:

How Crowdsourced Astrophotographs on the Web Are Revolutionizing Astronomy


Emerging Technology From the arXiv: “Astrophotography is currently undergoing a revolution thanks to the increased availability of high quality digital cameras and the software available to process the pictures after they have been taken.
Since photographs of the night sky are almost always better with long exposures that capture more light, this processing usually involves combining several images of the same part of the sky to produce one with a much longer effective exposure.
That’s all straightforward if you’ve taken the pictures yourself with the same gear under the same circumstances. But astronomers want to do better.
“The astrophotography group on Flickr alone has over 68,000 images,” say Dustin Lang at Carnegie Mellon University in Pittsburgh and a couple of pals. These and other images represent a vast source of untapped data for astronomers.
The problem is that it’s hard to combine images accurately when little is known about how they were taken. Astronomers take great care to use imaging equipment in which the pixels produce a signal that is proportional to the number of photons that hit.
But the same cannot be said of the digital cameras widely used by amateurs. All kinds of processes can end up influencing the final image.
So any algorithm that combines them has to cope with these variations. “We want to do this without having to infer the (possibly highly nonlinear) processing that has been applied to each individual image, each of which has been wrecked in its own loving way by its creator,” say Lang and co.
Now, these guys say they’ve cracked it. They’ve developed a system that automatically combines images from the same part of the sky to increase the effective exposure time of the resulting picture. And they say the combined images can rival those from much professional telescopes.
They’ve tested this approach by downloading images of two well-known astrophysical objects: the NGC 5907 Galaxy and the colliding pair of galaxies—Messier 51a and 51b.
For NGC 5907, they ended up with 4,000 images from Flickr, 1,000 from Bing and 100 from Google. They used an online system called astrometry.net that automatically aligns and registers images of the night sky and then combined the images using their new algorithm, which they call Enhance.
The results are impressive. They say that the combined images of NGC5907 (bottom three images) show some of the same faint features that revealed a single image taken over 11 hours of exposure using a 50 cm telescope (the top left image). All the images reveal the same kind of fine detail such as a faint stellar stream around the galaxy.
The combined image for the M51 galaxies is just as impressive, taking only 40 minutes to produce on a single processor. It reveals extended structures around both galaxies, which astronomers know to be debris from their gravitational interaction as they collide.
Lang and co say these faint features are hugely important because they allow astronomers to measure the age, mass ratios, and orbital configurations of the galaxies involved. Interestingly, many of these faint features are not visible in any of the input images taken from the Web. They emerge only once images have been combined.
One potential problem with algorithms like this is that they need to perform well as the number of images they combine increases. It’s no good if they grind to a halt as soon as a substantial amount of data becomes available.
On this score, Lang and co say astronomers can rest easy. The performance of their new Enhance algorithm scales linearly with the number of images it has to combine. That means it should perform well on large datasets.
The bottom line is that this kind of crowd-sourced astronomy has the potential to make a big impact, given that the resulting images rival those from large telescopes.
And it could also be used for historical images, say Lang and co. The Harvard Plate Archives, for example, contain half a million images dating back to the 1880s. These were all taken using different emulsions, with different exposures and developed using different processes. So the plates all have different responses to light, making them hard to compare.
That’s exactly the problem that Lang and co have solved for digital images on the Web. So it’s not hard to imagine how they could easily combine the data from the Harvard archives as well….”
Ref: arxiv.org/abs/1406.1528 : Towards building a Crowd-Sourced Sky Map

Every citizen a scientist? An EU project tries to change the face of research


Project News from the European Commission:  “SOCIENTIZE builds on the concept of ‘Citizen Science’, which sees thousands of volunteers, teachers, researchers and developers put together their skills, time and resources to advance scientific research. Thanks to open source tools developed under the project, participants can help scientists collect data – which will then be analysed by professional researchers – or even perform tasks that require human cognition or intelligence like image classification or analysis.

Every citizen can be a scientist
The project helps usher in new advances in everything from astronomy to social science.
‘One breakthrough is our increased capacity to reproduce, analyse and understand complex issues thanks to the engagement of large groups of volunteers,’ says Mr Fermin Serrano Sanz, researcher at the University of Zaragoza and Project Coordinator of SOCIENTIZE. ‘And everyone can be a neuron in our digitally-enabled brain.’
But how can ordinary citizens help with such extraordinary science? The key, says Mr Serrano Sanz, is in harnessing the efforts of thousands of volunteers to collect and classify data. ‘We are already gathering huge amounts of user-generated data from the participants using their mobile phones and surrounding knowledge,’ he says.
For example, the experiment ‘SavingEnergy@Home’ asks users to submit data about the temperatures in their homes and neighbourhoods in order to build up a clearer picture of temperatures in cities across the EU, while in Spain, GripeNet.es asks citizens to report when they catch the flu in order to monitor outbreaks and predict possible epidemics.
Many Hands Make Light Work
But citizens can also help analyse data. Even the most advanced computers are not very good at recognising things like sun spots or cells, whereas people can tell the difference between living and dying cells very easily, given only a short training.
The SOCIENTIZE projects ‘Sun4All’ and ‘Cell Spotting’ ask volunteers to label images of solar activity and cancer cells from an application on their phone or computer. With Cell Spotting, for instance, participants can observe cell cultures being studied with a microscope in order to determine their state and the effectiveness of medicines. Analysing this data would take years and cost hundreds of thousands of euros if left to a small team of scientists – but with thousands of volunteers helping the effort, researchers can make important breakthroughs quickly and more cheaply than ever before.
But in addition to bringing citizens closer to science, SOCIENTIZE also brings science closer to citizens. On 12-14 June, the project participated in the SONAR festival with ‘A Collective Music Experiment’ (CME). ‘Two hundred people joined professional DJs and created musical patterns using a web tool; participants shared their creations and re-used other parts in real time. The activity in the festival also included a live show of RdeRumba and Mercadal playing amateurs rhythms’ Mr. Serrano Sanz explains.
The experiment – which will be presented in a mini-documentary to raise awareness about citizen science – is expected to help understand other innovation processes observed in emergent social, technological, economic or political transformations. ‘This kind of event brings together a really diverse set of participants. The diversity does not only enrich the data; it improves the dialogue between professionals and volunteers. As a result, we see some new and innovative approaches to research.’
The EUR 0.7 million project brings together 6 partners from 4 countries: Spain (University of Zaragoza and TECNARA), Portugal (Museu da Ciência-Coimbra, MUSC ; Universidade de Coimbra),  Austria (Zentrum für Soziale Innovation) and Brazil (Universidade Federal de Campina Grande, UFCG).
SOCIENTIZE will end in October 2104 after bringing together 12000 citizens in different phases of research activities for 24 months.”

Selected Readings on Crowdsourcing Tasks and Peer Production


The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of crowdsourcing was originally published in 2014.

Technological advances are creating a new paradigm by which institutions and organizations are increasingly outsourcing tasks to an open community, allocating specific needs to a flexible, willing and dispersed workforce. “Microtasking” platforms like Amazon’s Mechanical Turk are a burgeoning source of income for individuals who contribute their time, skills and knowledge on a per-task basis. In parallel, citizen science projects – task-based initiatives in which citizens of any background can help contribute to scientific research – like Galaxy Zoo are demonstrating the ability of lay and expert citizens alike to make small, useful contributions to aid large, complex undertakings. As governing institutions seek to do more with less, looking to the success of citizen science and microtasking initiatives could provide a blueprint for engaging citizens to help accomplish difficult, time-consuming objectives at little cost. Moreover, the incredible success of peer-production projects – best exemplified by Wikipedia – instills optimism regarding the public’s willingness and ability to complete relatively small tasks that feed into a greater whole and benefit the public good. You can learn more about this new wave of “collective intelligence” by following the MIT Center for Collective Intelligence and their annual Collective Intelligence Conference.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)

Benkler, Yochai. The Wealth of Networks: How Social Production Transforms Markets and Freedom. Yale University Press, 2006. http://bit.ly/1aaU7Yb.

  • In this book, Benkler “describes how patterns of information, knowledge, and cultural production are changing – and shows that the way information and knowledge are made available can either limit or enlarge the ways people can create and express themselves.”
  • In his discussion on Wikipedia – one of many paradigmatic examples of people collaborating without financial reward – he calls attention to the notable ongoing cooperation taking place among a diversity of individuals. He argues that, “The important point is that Wikipedia requires not only mechanical cooperation among people, but a commitment to a particular style of writing and describing concepts that is far from intuitive or natural to people. It requires self-discipline. It enforces the behavior it requires primarily through appeal to the common enterprise that the participants are engaged in…”

Brabham, Daren C. Using Crowdsourcing in Government. Collaborating Across Boundaries Series. IBM Center for The Business of Government, 2013. http://bit.ly/17gzBTA.

  • In this report, Brabham categorizes government crowdsourcing cases into a “four-part, problem-based typology, encouraging government leaders and public administrators to consider these open problem-solving techniques as a way to engage the public and tackle difficult policy and administrative tasks more effectively and efficiently using online communities.”
  • The proposed four-part typology describes the following types of crowdsourcing in government:
    • Knowledge Discovery and Management
    • Distributed Human Intelligence Tasking
    • Broadcast Search
    • Peer-Vetted Creative Production
  • In his discussion on Distributed Human Intelligence Tasking, Brabham argues that Amazon’s Mechanical Turk and other microtasking platforms could be useful in a number of governance scenarios, including:
    • Governments and scholars transcribing historical document scans
    • Public health departments translating health campaign materials into foreign languages to benefit constituents who do not speak the native language
    • Governments translating tax documents, school enrollment and immunization brochures, and other important materials into minority languages
    • Helping governments predict citizens’ behavior, “such as for predicting their use of public transit or other services or for predicting behaviors that could inform public health practitioners and environmental policy makers”

Boudreau, Kevin J., Patrick Gaule, Karim Lakhani, Christoph Reidl, Anita Williams Woolley. “From Crowds to Collaborators: Initiating Effort & Catalyzing Interactions Among Online Creative Workers.” Harvard Business School Technology & Operations Mgt. Unit Working Paper No. 14-060. January 23, 2014. https://bit.ly/2QVmGUu.

  • In this working paper, the authors explore the “conditions necessary for eliciting effort from those affecting the quality of interdependent teamwork” and “consider the the role of incentives versus social processes in catalyzing collaboration.”
  • The paper’s findings are based on an experiment involving 260 individuals randomly assigned to 52 teams working toward solutions to a complex problem.
  • The authors determined the level of effort in such collaborative undertakings are sensitive to cash incentives. However, collaboration among teams was driven more by the active participation of teammates, rather than any monetary reward.

Franzoni, Chiara, and Henry Sauermann. “Crowd Science: The Organization of Scientific Research in Open Collaborative Projects.” Research Policy (August 14, 2013). http://bit.ly/HihFyj.

  • In this paper, the authors explore the concept of crowd science, which they define based on two important features: “participation in a project is open to a wide base of potential contributors, and intermediate inputs such as data or problem solving algorithms are made openly available.” The rationale for their study and conceptual framework is the “growing attention from the scientific community, but also policy makers, funding agencies and managers who seek to evaluate its potential benefits and challenges. Based on the experiences of early crowd science projects, the opportunities are considerable.”
  • Based on the study of a number of crowd science projects – including governance-related initiatives like Patients Like Me – the authors identify a number of potential benefits in the following categories:
    • Knowledge-related benefits
    • Benefits from open participation
    • Benefits from the open disclosure of intermediate inputs
    • Motivational benefits
  • The authors also identify a number of challenges:
    • Organizational challenges
    • Matching projects and people
    • Division of labor and integration of contributions
    • Project leadership
    • Motivational challenges
    • Sustaining contributor involvement
    • Supporting a broader set of motivations
    • Reconciling conflicting motivations

Kittur, Aniket, Ed H. Chi, and Bongwon Suh. “Crowdsourcing User Studies with Mechanical Turk.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 453–456. CHI ’08. New York, NY, USA: ACM, 2008. http://bit.ly/1a3Op48.

  • In this paper, the authors examine “[m]icro-task markets, such as Amazon’s Mechanical Turk, [which] offer a potential paradigm for engaging a large number of users for low time and monetary costs. [They] investigate the utility of a micro-task market for collecting user measurements, and discuss design considerations for developing remote micro user evaluation tasks.”
  • The authors conclude that in addition to providing a means for crowdsourcing small, clearly defined, often non-skill-intensive tasks, “Micro-task markets such as Amazon’s Mechanical Turk are promising platforms for conducting a variety of user study tasks, ranging from surveys to rapid prototyping to quantitative measures. Hundreds of users can be recruited for highly interactive tasks for marginal costs within a timeframe of days or even minutes. However, special care must be taken in the design of the task, especially for user measurements that are subjective or qualitative.”

Kittur, Aniket, Jeffrey V. Nickerson, Michael S. Bernstein, Elizabeth M. Gerber, Aaron Shaw, John Zimmerman, Matthew Lease, and John J. Horton. “The Future of Crowd Work.” In 16th ACM Conference on Computer Supported Cooperative Work (CSCW 2013), 2012. http://bit.ly/1c1GJD3.

  • In this paper, the authors discuss paid crowd work, which “offers remarkable opportunities for improving productivity, social mobility, and the global economy by engaging a geographically distributed workforce to complete complex tasks on demand and at scale.” However, they caution that, “it is also possible that crowd work will fail to achieve its potential, focusing on assembly-line piecework.”
  • The authors argue that seven key challenges must be met to ensure that crowd work processes evolve and reach their full potential:
    • Designing workflows
    • Assigning tasks
    • Supporting hierarchical structure
    • Enabling real-time crowd work
    • Supporting synchronous collaboration
    • Controlling quality

Madison, Michael J. “Commons at the Intersection of Peer Production, Citizen Science, and Big Data: Galaxy Zoo.” In Convening Cultural Commons, 2013. http://bit.ly/1ih9Xzm.

  • This paper explores a “case of commons governance grounded in research in modern astronomy. The case, Galaxy Zoo, is a leading example of at least three different contemporary phenomena. In the first place, Galaxy Zoo is a global citizen science project, in which volunteer non-scientists have been recruited to participate in large-scale data analysis on the Internet. In the second place, Galaxy Zoo is a highly successful example of peer production, some times known as crowdsourcing…In the third place, is a highly visible example of data-intensive science, sometimes referred to as e-science or Big Data science, by which scientific researchers develop methods to grapple with the massive volumes of digital data now available to them via modern sensing and imaging technologies.”
  • Madison concludes that the success of Galaxy Zoo has not been the result of the “character of its information resources (scientific data) and rules regarding their usage,” but rather, the fact that the “community was guided from the outset by a vision of a specific organizational solution to a specific research problem in astronomy, initiated and governed, over time, by professional astronomers in collaboration with their expanding universe of volunteers.”

Malone, Thomas W., Robert Laubacher and Chrysanthos Dellarocas. “Harnessing Crowds: Mapping the Genome of Collective Intelligence.” MIT Sloan Research Paper. February 3, 2009. https://bit.ly/2SPjxTP.

  • In this article, the authors describe and map the phenomenon of collective intelligence – also referred to as “radical decentralization, crowd-sourcing, wisdom of crowds, peer production, and wikinomics – which they broadly define as “groups of individuals doing things collectively that seem intelligent.”
  • The article is derived from the authors’ work at MIT’s Center for Collective Intelligence, where they gathered nearly 250 examples of Web-enabled collective intelligence. To map the building blocks or “genes” of collective intelligence, the authors used two pairs of related questions:
    • Who is performing the task? Why are they doing it?
    • What is being accomplished? How is it being done?
  • The authors concede that much work remains to be done “to identify all the different genes for collective intelligence, the conditions under which these genes are useful, and the constraints governing how they can be combined,” but they believe that their framework provides a useful start and gives managers and other institutional decisionmakers looking to take advantage of collective intelligence activities the ability to “systematically consider many possible combinations of answers to questions about Who, Why, What, and How.”

Mulgan, Geoff. “True Collective Intelligence? A Sketch of a Possible New Field.” Philosophy & Technology 27, no. 1. March 2014. http://bit.ly/1p3YSdd.

  • In this paper, Mulgan explores the concept of a collective intelligence, a “much talked about but…very underdeveloped” field.
  • With a particular focus on health knowledge, Mulgan “sets out some of the potential theoretical building blocks, suggests an experimental and research agenda, shows how it could be analysed within an organisation or business sector and points to possible intellectual barriers to progress.”
  • He concludes that the “central message that comes from observing real intelligence is that intelligence has to be for something,” and that “turning this simple insight – the stuff of so many science fiction stories – into new theories, new technologies and new applications looks set to be one of the most exciting prospects of the next few years and may help give shape to a new discipline that helps us to be collectively intelligent about our own collective intelligence.”

Sauermann, Henry and Chiara Franzoni. “Participation Dynamics in Crowd-Based Knowledge Production: The Scope and Sustainability of Interest-Based Motivation.” SSRN Working Papers Series. November 28, 2013. http://bit.ly/1o6YB7f.

  • In this paper, Sauremann and Franzoni explore the issue of interest-based motivation in crowd-based knowledge production – in particular the use of the crowd science platform Zooniverse – by drawing on “research in psychology to discuss important static and dynamic features of interest and deriv[ing] a number of research questions.”
  • The authors find that interest-based motivation is often tied to a “particular object (e.g., task, project, topic)” not based on a “general trait of the person or a general characteristic of the object.” As such, they find that “most members of the installed base of users on the platform do not sign up for multiple projects, and most of those who try out a project do not return.”
  • They conclude that “interest can be a powerful motivator of individuals’ contributions to crowd-based knowledge production…However, both the scope and sustainability of this interest appear to be rather limited for the large majority of contributors…At the same time, some individuals show a strong and more enduring interest to participate both within and across projects, and these contributors are ultimately responsible for much of what crowd science projects are able to accomplish.”

Schmitt-Sands, Catherine E. and Richard J. Smith. “Prospects for Online Crowdsourcing of Social Science Research Tasks: A Case Study Using Amazon Mechanical Turk.” SSRN Working Papers Series. January 9, 2014. http://bit.ly/1ugaYja.

  • In this paper, the authors describe an experiment involving the nascent use of Amazon’s Mechanical Turk as a social science research tool. “While researchers have used crowdsourcing to find research subjects or classify texts, [they] used Mechanical Turk to conduct a policy scan of local government websites.”
  • Schmitt-Sands and Smith found that “crowdsourcing worked well for conducting an online policy program and scan.” The microtasked workers were helpful in screening out local governments that either did not have websites or did not have the types of policies and services for which the researchers were looking. However, “if the task is complicated such that it requires ongoing supervision, then crowdsourcing is not the best solution.”

Shirky, Clay. Here Comes Everybody: The Power of Organizing Without Organizations. New York: Penguin Press, 2008. https://bit.ly/2QysNif.

  • In this book, Shirky explores our current era in which, “For the first time in history, the tools for cooperating on a global scale are not solely in the hands of governments or institutions. The spread of the Internet and mobile phones are changing how people come together and get things done.”
  • Discussing Wikipedia’s “spontaneous division of labor,” Shirky argues that the process is like, “the process is more like creating a coral reef, the sum of millions of individual actions, than creating a car. And the key to creating those individual actions is to hand as much freedom as possible to the average user.”

Silvertown, Jonathan. “A New Dawn for Citizen Science.” Trends in Ecology & Evolution 24, no. 9 (September 2009): 467–471. http://bit.ly/1iha6CR.

  • This article discusses the move from “Science for the people,” a slogan adopted by activists in the 1970s to “’Science by the people,’ which is “a more inclusive aim, and is becoming a distinctly 21st century phenomenon.”
  • Silvertown identifies three factors that are responsible for the explosion of activity in citizen science, each of which could be similarly related to the crowdsourcing of skills by governing institutions:
    • “First is the existence of easily available technical tools for disseminating information about products and gathering data from the public.
    • A second factor driving the growth of citizen science is the increasing realisation among professional scientists that the public represent a free source of labour, skills, computational power and even finance.
    • Third, citizen science is likely to benefit from the condition that research funders such as the National Science Foundation in the USA and the Natural Environment Research Council in the UK now impose upon every grantholder to undertake project-related science outreach. This is outreach as a form of public accountability.”

Szkuta, Katarzyna, Roberto Pizzicannella, David Osimo. “Collaborative approaches to public sector innovation: A scoping study.” Telecommunications Policy. 2014. http://bit.ly/1oBg9GY.

  • In this article, the authors explore cases where government collaboratively delivers online public services, with a focus on success factors and “incentives for services providers, citizens as users and public administration.”
  • The authors focus on six types of collaborative governance projects:
    • Services initiated by government built on government data;
    • Services initiated by government and making use of citizens’ data;
    • Services initiated by civil society built on open government data;
    • Collaborative e-government services; and
    • Services run by civil society and based on citizen data.
  • The cases explored “are all designed in the way that effectively harnesses the citizens’ potential. Services susceptible to collaboration are those that require computing efforts, i.e. many non-complicated tasks (e.g. citizen science projects – Zooniverse) or citizens’ free time in general (e.g. time banks). Those services also profit from unique citizens’ skills and their propensity to share their competencies.”

CollaborativeScience.org: Sustaining Ecological Communities Through Citizen Science and Online Collaboration


David Mellor at CommonsLab: “In any endeavor, there can be a tradeoff between intimacy and impact. The same is true for science in general and citizen science in particular. Large projects with thousands of collaborators can have incredible impact and robust, global implications. On the other hand, locally based projects can foster close-knit ties that encourage collaboration and learning, but face an uphill battle when it comes to creating rigorous and broadly relevant investigations. Online collaboration has the potential to harness the strengths of both of these strategies if a space can be created that allows for the easy sharing of complex ideas and conservation strategies.
CollaborativeScience.org was created by researchers from five different universities to train Master Naturalists in ecology, scientific modeling and adaptive management, and then give these capable volunteers a space to put their training to work and create conservation plans in collaboration with researchers and land managers.
We are focusing on scientific modeling throughout this process because environmental managers and ecologists have been trained to intuitively create explanations based on a very large number of related observations. As new data are collected, these explanations are revised and are put to use in generating new, testable hypotheses. The modeling tools that we are providing to our volunteers allow them to formalize this scientific reasoning by adding information, sources and connections, then making predictions based on possible changes to the system. We integrate their projects into the well-established citizen science tools at CitSci.org and guide them through the creation of an adaptive management plan, a proven conservation project framework…”

The Weird, Wild World of Citizen Science Is Already Here


David Lang in Wired: “Up and down the west coast of North America, countless numbers of starfish are dying. The affliction, known as Sea Star Wasting Syndrome, is already being called the biggest die-off of sea stars in recorded history, and we’re still in the dark as to what’s causing it or what it means. It remains an unsolved scientific mystery. The situation is also shaping up as a case study of an unsung scientific opportunity: the rise of citizen science and exploration.
The sea star condition was first noticed by Laura James, a diver and underwater videographer based in Seattle. As they began washing up on the shore near her home with lesions and missing limbs, she became concerned and notified scientists. Similar sightings started cropping up all along the West Coast, with gruesome descriptions of sea stars that were disintegrating in a matter of days, and populations that had been decimated. As scientists race to understand what’s happening, they’ve enlisted the help of amateurs like James, to move faster. Pete Raimondi’s lab at UC Santa Cruz has created the Sea Star Wasting Map, the baseline for monitoring the issue, to capture the diverse set of contributors and collaborators.
The map is one of many new models of citizen-powered science–a blend of amateurs and professionals, looking and learning together–that are beginning to emerge. Just this week, NASA endorsed a group of amateur astronomers to attempt to rescue a vintage U.S. spacecraft. NASA doesn’t have the money to do it, and this passionate group of citizen scientists can handle it.
Unfortunately, the term “citizen science” is terrible. It’s vague enough to be confusing, yet specific enough to seem exclusive. It’s too bad, too, because the idea of citizen science is thrilling. I love the notion that I can participate in the expanding pool of human knowledge and understanding, even though the extent of my formal science education is a high school biology class. To me, it seemed a genuine invitation to be curious. A safe haven for beginners. A license to explore.
Not everyone shares my romantic perspective, though. If you ask a university researcher, they’re likely to explain citizen science as a way for the public to contribute data points to larger, professionally run studies, like participating in the galaxy-spotting website Zooniverse or taking part in the annual Christmas Bird Count with the Audubon Society. It’s a model on the scientific fringes; using broad participation to fill the gaps in necessary data.
There’s power in this diffuse definition, though, as long as new interpretations are welcomed and encouraged. By inviting and inspiring people to ask their own questions, citizen science can become much more than a way of measuring bird populations. From the drone-wielding conservationists in South Africa to the makeshift biolabs in Brooklyn, a widening circle of participants are wearing the amateur badge with honor. And all of these groups–the makers, the scientists, the hobbyists–are converging to create a new model for discovery. In other words, the maker movement and the traditional science world are on a collision course.
To understand the intersection, it helps to know where each of those groups is coming from….”

Paying Farmers to Welcome Birds


Jim Robbins in The New York Times: “The Central Valley was once one of North America’s most productive wildlife habitats, a 450-mile-long expanse marbled with meandering streams and lush wetlands that provided an ideal stop for migratory shorebirds on their annual journeys from South America and Mexico to the Arctic and back.

Farmers and engineers have long since tamed the valley. Of the wetlands that existed before the valley was settled, about 95 percent are gone, and the number of migratory birds has declined drastically. But now an unusual alliance of conservationists, bird watchers and farmers have joined in an innovative plan to restore essential habitat for the migrating birds.

The program, called BirdReturns, starts with data from eBird, the pioneering citizen science project that asks birders to record sightings on a smartphone app and send the information to the Cornell Lab of Ornithology in upstate New York.

By crunching data from the Central Valley, eBird can generate maps showing where virtually every species congregates in the remaining wetlands. Then, by overlaying those maps on aerial views of existing surface water, it can determine where the birds’ need for habitat is greatest….

BirdReturns is an example of the growing movement called reconciliation ecology, in which ecosystems dominated by humans are managed to increase biodiversity.

“It’s a new ‘Moneyball,’ ” said Eric Hallstein, an economist with the Nature Conservancy and a designer of the auctions, referring to the book and movie about the Oakland Athletics’ data-driven approach to baseball. “We’re disrupting the conservation industry by taking a new kind of data, crunching it differently and contracting differently.”